4,652 research outputs found

    Experimentally finding dense subgraphs using a time-bin encoded Gaussian boson sampling device

    Get PDF
    Gaussian Boson Sampling (GBS) is a quantum computing concept based on drawing samples from a multimode nonclassical Gaussian state using photon-number resolving detectors. It was initially posed as a near-term approach aiming to achieve quantum advantage, but several applications have been proposed ever since, such as the calculation of graph features or molecular vibronic spectra, among others. For the first time, we use a time-bin encoded interferometer to implement GBS experimentally and extract samples to enhance the search for dense subgraphs in a graph. Our results indicate an improvement over classical methods for subgraphs of sizes three and four in a graph containing ten nodes. In addition, we numerically explore the role of imperfections in the optical circuit and on the performance of the algorithm

    Enteric glia mediate neuron death in colitis through purinergic pathways that require connexin-43 and nitric oxide

    Get PDF
    The concept of enteric glia as regulators of intestinal homeostasis is slowly gaining acceptance as a central concept in neurogastroenterology. Yet how glia contribute to intestinal disease is still poorly understood. Purines generated during inflammation drive enteric neuron death by activating neuronal P2X7 purine receptors (P2X7R), triggering ATP release via neuronal pannexin-1 channels that subsequently recruits intracellular calcium ([Ca(2+)]i) responses in the surrounding enteric glia. We tested the hypothesis that the activation of enteric glia contributes to neuron death during inflammation.We studied neuroinflammation in vivo using the 2,4-dinitrobenzenesulfonic acid model of colitis and in situ using whole-mount preparations of human and mouse intestine. Transgenic mice with a targeted deletion of glial connexin-43 (Cx43) [GFAP∷Cre (ERT2+/-)/Cx43(f/f) ] were used to specifically disrupt glial signaling pathways. Mice deficient in inducible nitric oxide (NO) synthase (iNOS (-/-)) were used to study NO production. Protein expression and oxidative stress were measured using immunohistochemistry and in situ Ca(2+) and NO imaging were used to monitor glial [Ca(2+)]i and [NO]i.Purinergic activation of enteric glia drove [Ca(2+)]i responses and enteric neuron death through a Cx43-dependent mechanism. Neurotoxic Cx43 activity, driven by NO production from glial iNOS, was required for neuron death. Glial Cx43 opening liberated ATP and Cx43-dependent ATP release was potentiated by NO.Our results show that the activation of glial cells in the context of neuroinflammation kills enteric neurons. Mediators of inflammation that include ATP and NO activate neurotoxic pathways that converge on glial Cx43 hemichannels. The glial response to inflammatory mediators might contribute to the development of motility disorders

    A study of serum cystatin C as a marker of diabetic nephropathy among patients with type 2 diabetes mellitus: A systematic review and meta-analysis

    Get PDF
    Clinically type 2 diabetes mellitus (T2DM) without serum creatinine microalbuminuria, macroalbuminuria lacks predictors for diabetic nephropathy (DN). We utilized a meta-analysis technique to review the literature to evaluate whether serum cystatin C may be used as an early marker of diabetic nephropathy in light of the differing opinions regarding the utility of serum cystatin C as such. PubMed, Google Scholar, Web of Science, EMBASE, and Scopus Database were searched using various key search terms. Studies involving T2DM patients and containing serum cystatin C levels and the estimated glomerular filtration rate (eGFR) data were included. Pooled sensitivity, specificity, positive predictive value, and negative predictive value were also calculated. The pooled sensitivity and specificity of serum cystatin C for predicting DN were 0.87 (95% CI 0.84 - 0.91) and 0.84 (95% CI 0.83 - 0.88) respectively. The pooled positive and negative predictive values of serum cystatin C for predicting DN were 7.035 (95 % CI 4.30 – 11.43) and 0.15 (95% CI 0.09 - 0.21) respectively. The area under the summary receiver operating characteristic (SROC) curve was 0.9548 and the diagnostic odds ratio was 67.10 (95% CI 28.12 - 156.84). Serum cystatin C is a significant biomarker of DN among patients with T2DM. It can also positively monitor kidney function progression and prediction of adverse outcomes among T2DM patients

    Polycystic ovarian syndrome and microbiome: Implications for women’s health

    Get PDF
    The endocrine condition known as polycystic ovarian syndrome (PCOS) is complicated and diverse. It impacts between 4 to 20 % of women of reproductive age and is linked to a significant risk of infertility, obesity, and insulin resistance. The aetiology of PCOS remains unclear and can be multifactorial, including genetic, neuroendocrine, and metabolic causes. Recent studies in humans have shown an association between changes in the gut and vaginal microbiome and the metabolic and clinical parameters of PCOS. The aim of this review was to understand the relationship between PCOS and the microbiome, including any potential underlying mechanisms, and to look at potential therapeutic strategies to improve the therapeutic approach for patients. As a result, a hypothesis is postulated that changes in the microbiota contribute to the development of PCOS and explored the therapeutic opportunities which include probiotics, prebiotics, synbiotics, fecal microbiota transplantation and IL-22

    Infall of gas as the formation mechanism of stars up to 20 times more massive than the Sun

    Get PDF
    Theory predicts and observations confirm that low-mass stars (like the Sun) in their early life grow by accreting gas from the surrounding material. But for stars ~ 10 times more massive than the Sun (~10 M_sun), the powerful stellar radiation is expected to inhibit accretion and thus limit the growth of their mass. Clearly, stars with masses >10 M_sun exist, so there must be a way for them to form. The problem may be solved by non-spherical accretion, which allows some of the stellar photons to escape along the symmetry axis where the density is lower. The recent detection of rotating disks and toroids around very young massive stars has lent support to the idea that high-mass (> 8 M_sun) stars could form in this way. Here we report observations of an ammonia line towards a high-mass star forming region. We conclude from the data that the gas is falling inwards towards a very young star of ~20 M_sun, in line with theoretical predictions of non-spherical accretion.Comment: 11 pages, 2 figure

    The endoplasmic reticulum remains functionally connected by vesicular transport after its fragmentation in cells expressing Z-alpha(1)-antitrypsin

    Get PDF
    α1-Antitrypsin is a serine protease inhibitor produced in the liver that is responsible for the regulation of pulmonary inflammation. The commonest pathogenic gene mutation yields Z-α1-antitrypsin, which has a propensity to self-associate forming polymers that become trapped in inclusions of endoplasmic reticulum (ER). It is unclear whether these inclusions are connected to the main ER network in Z-α1-antitrypsin-expressing cells. Using live cell imaging, we found that despite inclusions containing an immobile matrix of polymeric α1-antitrypsin, small ER resident proteins can diffuse freely within them. Inclusions have many features to suggest they represent fragmented ER, and some are physically separated from the tubular ER network, yet we observed cargo to be transported between them in a cytosol-dependent fashion that is sensitive to N-ethylmaleimide and dependent on Sar1 and sec22B. We conclude that protein recycling occurs between ER inclusions despite their physical separation.—Dickens, J. A., Ordóñez, A., Chambers, J. E., Beckett, A. J., Patel, V., Malzer, E., Dominicus, C. S., Bradley, J., Peden, A. A., Prior, I. A., Lomas, D. A., Marciniak, S. J. The endoplasmic reticulum remains functionally connected by vesicular transport after its fragmentation in cells expressing Z-α1-antitrypsin

    Mechanisms of Cognitive Impairment in Cerebral Small Vessel Disease: Multimodal MRI Results from the St George's Cognition and Neuroimaging in Stroke (SCANS) Study.

    Get PDF
    Cerebral small vessel disease (SVD) is a common cause of vascular cognitive impairment. A number of disease features can be assessed on MRI including lacunar infarcts, T2 lesion volume, brain atrophy, and cerebral microbleeds. In addition, diffusion tensor imaging (DTI) is sensitive to disruption of white matter ultrastructure, and recently it has been suggested that additional information on the pattern of damage may be obtained from axial diffusivity, a proposed marker of axonal damage, and radial diffusivity, an indicator of demyelination. We determined the contribution of these whole brain MRI markers to cognitive impairment in SVD. Consecutive patients with lacunar stroke and confluent leukoaraiosis were recruited into the ongoing SCANS study of cognitive impairment in SVD (n = 115), and underwent neuropsychological assessment and multimodal MRI. SVD subjects displayed poor performance on tests of executive function and processing speed. In the SVD group brain volume was lower, white matter hyperintensity volume higher and all diffusion characteristics differed significantly from control subjects (n = 50). On multi-predictor analysis independent predictors of executive function in SVD were lacunar infarct count and diffusivity of normal appearing white matter on DTI. Independent predictors of processing speed were lacunar infarct count and brain atrophy. Radial diffusivity was a stronger DTI predictor than axial diffusivity, suggesting ischaemic demyelination, seen neuropathologically in SVD, may be an important predictor of cognitive impairment in SVD. Our study provides information on the mechanism of cognitive impairment in SVD

    On-chip beam rotators, polarizers and adiabatic mode converters through low-loss waveguides with variable cross-sections

    Get PDF
    Photonics integrated circuitry would benefit considerably from the ability to arbitrarily control waveguide cross-sections with high precision and low loss, in order to provide more degrees of freedom in manipulating propagating light. Here, we report on a new optical-fibres-compatible glass waveguide by femtosecond laser writing, namely spherical phase induced multi-core waveguide (SPIM-WG), which addresses this challenging task with three dimensional on-chip light control. Precise deformation of cross-sections is achievable along the waveguide, with shapes and sizes finely controllable of high resolution in both horizontal and vertical transversal directions. We observed that these waveguides have high refractive index contrast of 0.017, low propagation loss of 0.14 dB/cm, and very low coupling loss of 0.19 dB coupled from a single mode fibre. SPIM-WG devices were easily fabricated that were able to perform on-chip beam rotation through varying angles, or manipulate polarization state of propagating light for target wavelengths. We also demonstrated SPIM-WG mode converters that provide arbitrary adiabatic mode conversion with high efficiency between symmetric and asymmetric non-uniform modes; examples include circular, elliptical modes and asymmetric modes from ppKTP waveguides which are generally applied in frequency conversion and quantum light sources. Created inside optical glass, these waveguides and devices have the capability to operate across ultra-broad bands from visible to infrared wavelengths. The compatibility with optical fibre also paves the way toward packaged photonic integrated circuitry, which usually needs input and output fibre connections

    Hip fracture risk assessment: Artificial neural network outperforms conditional logistic regression in an age- and sex-matched case control study

    Get PDF
    Copyright @ 2013 Tseng et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background - Osteoporotic hip fractures with a significant morbidity and excess mortality among the elderly have imposed huge health and economic burdens on societies worldwide. In this age- and sex-matched case control study, we examined the risk factors of hip fractures and assessed the fracture risk by conditional logistic regression (CLR) and ensemble artificial neural network (ANN). The performances of these two classifiers were compared. Methods - The study population consisted of 217 pairs (149 women and 68 men) of fractures and controls with an age older than 60 years. All the participants were interviewed with the same standardized questionnaire including questions on 66 risk factors in 12 categories. Univariate CLR analysis was initially conducted to examine the unadjusted odds ratio of all potential risk factors. The significant risk factors were then tested by multivariate analyses. For fracture risk assessment, the participants were randomly divided into modeling and testing datasets for 10-fold cross validation analyses. The predicting models built by CLR and ANN in modeling datasets were applied to testing datasets for generalization study. The performances, including discrimination and calibration, were compared with non-parametric Wilcoxon tests. Results - In univariate CLR analyses, 16 variables achieved significant level, and six of them remained significant in multivariate analyses, including low T score, low BMI, low MMSE score, milk intake, walking difficulty, and significant fall at home. For discrimination, ANN outperformed CLR in both 16- and 6-variable analyses in modeling and testing datasets (p?<?0.005). For calibration, ANN outperformed CLR only in 16-variable analyses in modeling and testing datasets (p?=?0.013 and 0.047, respectively). Conclusions - The risk factors of hip fracture are more personal than environmental. With adequate model construction, ANN may outperform CLR in both discrimination and calibration. ANN seems to have not been developed to its full potential and efforts should be made to improve its performance.National Health Research Institutes in Taiwa
    corecore