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Gaussian Boson Sampling (GBS) is a quantum computing concept based on drawing samples from
a multimode nonclassical Gaussian state using photon-number resolving detectors. It was initially
posed as a near-term approach aiming to achieve quantum advantage, but several applications have
been proposed ever since, such as the calculation of graph features or molecular vibronic spectra,
among others. For the first time, we use a time-bin encoded interferometer to implement GBS
experimentally and extract samples to enhance the search for dense subgraphs in a graph. Our
results indicate an improvement over classical methods for subgraphs of sizes three and four in a
graph containing ten nodes. In addition, we numerically explore the role of imperfections in the
optical circuit and on the performance of the algorithm.

I. INTRODUCTION

Quantum computing promises to modify the current
computational paradigm [1, 2] by providing a substan-
tial speedup in the computation of specific tasks that
are currently intractable. Two key milestones have been
achieved in the field so far; (i) theoretically developing al-
gorithms that show a quantum speedup compared to the
classical counterpart [3], and, (ii) experimentally imple-
menting some protocol that exhibits a quantum advan-
tage, i.e. that are not possible to simulate in a classical
computer [4, 5]. Now, meeting these two at a common
ground where we show a practical quantum advantage
is the next necessary step. Two main avenues exist to
achieve this, either by building a fault-tolerant universal
quantum computer or by coming up with devices that
can outperform the classical method in a specific task
conceived as useful. Despite consistent progress over the
last few years, the former still seems a bit far away in
time, while the latter exhibits promising prospects in the
near term for particular scenarios [6].

In the optical domain, Gaussian Boson Sampling [7, 8]
has emerged as a potential candidate in this regard.
GBS involves injecting a multimode nonclassical Gaus-
sian state into an interferometer and measuring the num-
ber of photons at each output. The classical procedure to
simulate this sampling problem requires the computation
of a mathematical function called the Hafnian. Calculat-
ing the Hafnian constitutes a #P-hard problem, mean-
ing it is not efficiently computable on a classical com-
puter [7, 9]. So far, GBS has found applications both
as a smaller part in the bigger quantum computer pic-
ture as a resource state generator [10, 11], and as a stan-
dalone device that can be used, for instance, to calculate
vibronic spectra of molecules or graph features [12–14].
Concerning the two key milestones referred to previously,
a quantum advantage has been achieved by means of a
GBS experiment [5, 15], but no practical application has
been demonstrated yet. However, in a recent paper, Ar-
razola et al. [16] showed promising results on this avenue.

A key challenge of optical interferometers is to scale
them up in the number of modes. Traditionally, the in-
formation carried by an optical state is encoded in its
polarisation or spatial modes, implying the need for ex-
tensive hardware requirements when scaling up to a few
dozens of photons. As shown by Reck [17], the num-
ber of beam splitters needed to implement an arbitrary
m × m unitary matrix are m(m − 1)/2. These have
been implemented in bulk optics [18] and in integrated
platforms [19–21]. Other non-universal approaches have
been implemented in bulk optics [22] and in fibre archi-
tectures [23, 24], the largest to date being a bulk op-
tics interferometer with 144 input/output modes [15].
Ideally, an interferometer should be lossless, reconfig-
urable and scalable in the number of input and output
modes. A recent proposal [25] suggested using the tem-
poral modes to encode the information as a means to
scale up for Boson Sampling experiments. This scheme
is attractive for its scalability and reconfigurability [18],
whilst exhibiting comparable losses [26, 27] to the other
reconfigurable platforms [21]. Furthermore, in this ap-
proach, the number of components is fixed regardless of
the size of the implemented unitary. In principle, arbi-
trary scale can be achieved with minor additional hard-
ware. Alternative non-universal time-bin interferometers
have been proposed to achieve quantum supremacy via
high-dimensional GBS [28].

In this work, we (i) implement a 20-mode time-bin in-
terferometer to conduct a GBS experiment, and (ii) ex-
perimentally show how such GBS device can enhance the
search for dense subgraphs. In particular, we demon-
strate this for subgraphs of sizes three and four in a graph
of ten nodes. This constitutes the first experimental re-
alisation of GBS in a time-bin encoded manner and the
first practical usage of a GBS machine to improve the
search of dense subgraphs.

The paper is structured as follows. First, we introduce
the main concepts, namely Gaussian Boson Sampling,
the time-bin interferometer approach and the idea of us-
ing GBS to speed up the search for dense subgraphs in
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a graph. Then, we move on to describe the experimen-
tal work, which combines these three elements and show
the results obtained. To complement these, we perform
numerical calculations to study the role of imperfections
for the particular application of finding dense subgraphs.

II. THEORY

A. Gaussian Boson Sampling

Figure 1(a) illustrates the concept of Gaussian Boson
Sampling. We consider an m-mode system with sepa-
rable Gaussian state inputs that undergoes a transfor-
mation characterised by the transfer matrix Λ, followed
by single-photon detection. The input states, |ξi〉, can
be chosen from the spectrum of Gaussian states, namely,
vacuum, squeezed vacuum, coherent or thermal states.
The transfer matrix only consists of linear terms and
loss, which are Gaussian transformations [29]. There-
fore, the state at the output is also Gaussian and can
be completely described by a 2m × 2m covariance ma-
trix, Σ, and a displacement vector, α. In this con-
text, the probability to measure a certain output pattern
n = (n1, n2, n3, . . . , nm) is given by [7]

P (n) =
P (0)∏
i ni!

Haf(An), (1)

where P (0) is the probability of not detecting any pho-
tons at the output and Haf is the Hafnian function. The
Hafnian of a matrix is computed as

Haf(A) =
∑

M∈PMP(n)

∏
(i,j)∈M

Ai,j (2)

where PMP indicates the set of perfect matching permu-
tations of n objects. The matrix A can be derived from
the covariance matrix as

A = X(I −Q−1), (3)

where

X =

(
0 I
I 0

)
and (4a)

Q = Σ + I/2, (4b)

where I is the identity matrix of appropriate dimension.
The submatrix An is obtained by selecting ni times the
i-th and i+m-ith rows and columns of A. Subsequently,
An is a square matrix that grows with the total number
of detected photons N , with N =

∑
i ni. The matrix A

can be decomposed into a block matrix of the form,

A =

(
B C
CT B∗

)
, (5)

where B is a m×m symmetric matrix and C is a m×m
Hermitian matrix.

Source

(a) (b)

FIG. 1. (a) General GBS picture, where we have an m-
mode Gaussian state going into an interferometer described
by Λ̂ and is then detected using single-photon detectors. (b)
Time-bin encoded architecture to implement Gaussian Boson
Sampling experiments. The modes are defined by temporal
bins, and the interferometer is implemented by the double-
loop structure. We just need one light source to generate the
multimode input state, and we can detect the output state by
using only one single-photon detector.

In the particular case of having a pure Gaussian state
with no displacement at the output, A can be further
reduced to A = B⊕B∗, i.e. C = 0, and the probability
to measure a detection pattern n becomes

P (n) =
P (0)∏
i ni!
|Haf(Bn)|2, (6)

where the submatrixBn is obtained by selecting ni times
the i-th rows and columns. Note that in this case, the
matrixBn will be of size N×N and, due to the nature of
the Hafnian, N needs to be even. This agrees well with
the fact that if there is no loss present in the system,
which would add mixedness to the state, photons will
always come in pairs from the squeezed vacuum states
and, therefore, detecting an odd number of photons will
not be possible.

B. Time-bin interferometer

Here we introduce the time-bin interferometer [25], mo-
tivate its usage and explain how it can implement an
arbitrary unitary. Fig. 1(b) exhibits an abstract repre-
sentation of the end-to-end proposed architecture. We
can distinguish three main parts, the light source, the
interferometer and the detection scheme.

The fact that we only need a single source to run the
whole experiment, as opposed to many sources [5, 19]
or de-multiplexing techniques [20, 22], poses a significant
simplification in terms of experimental resources. The
laser system pumping the source will define the differ-
ent temporal modes, meaning that to enlarge the size of
the problem, we only need to let more pulses into the
interferometer. For instance, a Ti:Sapphire laser with a
repetition rate on the order of a few MHz and pulses of
picoseconds could be employed.

The interferometer consists of two loops arranged in a
“snowman”-like configuration, the lower one is the “stor-
age” loop and the upper one is the “processing” loop.
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The length of the processing loop is matched to the sep-
aration between consecutive pulses τp, while the storage
loop must accommodate all the interfering m modes. We
will consider its length to be an integer number of times
τp. The two loops are connected via a variable beam
splitter, s1, and to the input/output mode through a
fast switch, s2. Note that s2 has a dual purpose: cou-
pling the input photons into the interferometer and set-
ting the remaining modes to vacuum, i.e. acting as a
shutter. The main distinction between s1 and s2 is the
number of possible reflectivities each of them needs to
be able to achieve. s2 only acts as a switch, so it has
an on/off behaviour, whereas s1 is the beam splitter that
will implement the unitaries and, therefore, needs to be
able to cover a large range of possible splitting ratios. In
fact, even if we are limited by the possible values s1 can
realise, this architecture is still universal, as proven by
Aaronson and Bouland [30] and Sawicki [31]. However,
this scenario is not appealing experimentally since the
number of layers required to implement a certain unitary
would be significant, implying more loss.

Finally, we have the detection system. This presents
another substantial improvement of this architecture over
other platforms. Due to the temporal encoding of the in-
formation, we can potentially reduce the required num-
ber of detectors to one, compared to the spatial encoding
depicted in Fig. 1(a) in which we need m. This feature
can become very relevant when scaling up to bigger in-
terferometers. The main practical consideration is the
reset time of the detectors being larger than the time-bin
spacing, which could skew the output statistics.

Here we show how this approach can implement any
multimode interferometer [25, 26]. The processing loop
allows us to interfere consecutive modes, whilst the stor-
age loop enables the procedure to be repeated as many
times as required. The circuit in Fig. 2(a) describes the
explicit interaction with the processing loop, mode A, for
one pass through the storage loop, where Bi corresponds
to a general SU(2) operation – a phase shifter followed by
a Mach-Zehnder interferometer, for instance. The SWAP
operation couples the corresponding mode into the loop
mode, A. We assume that s1 can implement any arbi-
trary SU(2) operation. Each of the numbered modes,
except from A, corresponds to a temporal mode. Con-
veniently, we can disregard the auxiliary mode employed
for the interference, A, and rewrite the system in terms
of a Reck decomposition [17], as shown in Fig. 2(b). It is
clear then, that by applying this operation m − 1 times
we can accomplish any arbitrary m×m unitary. Hence,
this snowman structure is universal for linear optics. A
similar configuration can be used to optimally implement
the Clements decomposition [32, 33]. A relevant feature
of the time-bin interferometer implementation is the non-
uniformity of the loss incurred across the different tem-
poral modes [27]. In general, this limits the ability to
implement an arbitrary unitary [27]. In this case, bal-
ancing out the loss among all modes, at the expense of
detection rates, is not possible.

(a) (b)

FIG. 2. (a) Explicit circuit of a pass through the processing
loop. As per convention, the x symbol refers to the SWAP
operation. (b) Simplified circuit of a single pass through the
processing loop. The mode labels refer to time-bin modes, ex-
cept for A that is the processing loop mode, and Bi represents
beam splitter operation.

C. Finding dense subgraphs using a GBS device

A graph can be fully described by its adjacency matrix
∆, where the matrix elements ∆ij determine the weight
of the edge between nodes i and j, defining the connec-
tivity between all nodes. For the case of an undirected
graph, ∆ will be a symmetric matrix, i.e. ∆ij = ∆ji.

As we saw earlier in Eq. (5), the A matrix of a pure
Gaussian state can be reduced to a matrix formed only
by a symmetric matrix, B, as A = B ⊕B∗. In the case
of no displacements, this matrix fully describes the Gaus-
sian state. This naturally establishes a mapping between
the adjacency matrix of a graph G, ∆, and the matrix
describing a pure Gaussian state, B. In this regard, if
we can find a feature of a graph that is linked to the cal-
culation of the Hafnian of its adjacency matrix, we will
be able to use a GBS device to obtain some useful in-
formation about a graph. Indeed, Equation (2) provides
a connection between the connectivity of an unweighted
graph, described by the number of perfect matchings,
and the Hafnian.

We can define the density of a weighted graph, G, as

D(G) = 2

∑
i∈EG

wi

|VG|(|VG| − 1)
, (7)

where wi are the weights of the edges of G, EG, and
|VG| are the number of vertices in G. For an unweighted
graph, i.e. wi ∈ 0, 1, the density is bounded between 0
for an unconnected graph and 1 for a fully connected, or
complete, graph with wi = 1 ∀i. It was recently shown
by Arrazola and Bromley [13], that the number of perfect
matchings is related to the density of a graph, and, there-
fore, so is the Hafnian of a fully positive (or negative)
matrix. The higher the number of perfect matchings the
denser the graph will be. This means that we can employ
a GBS device to generate samples from a certain problem
matrix, and that these will form dense subgraphs of the
graph described by B with high probability. They show
that this strategy can enhance the search over uniform
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random searches or when using these samples as seeds
in more elaborate algorithms, for instance, simulated an-
nealing. More generally, this constitutes an example of
the enhancement provided by using proportional sam-
pling over random search in specific optimisation prob-
lems, as shown in [34].

The recipe for employing a GBS device for this purpose
is given in [14] as follows:

1. DecomposeA into a unitary matrix U and a vector
λ using the Takagi-Autonne decomposition. These
will correspond to the linear interferometer and
squeezing parameters at each of the input modes,
respectively.

2. Compile U into the appropriate beam splitter and
phase-shifting operations of the linear interferome-
ter. Program the interferometer accordingly.

3. Rescale the squeezing parameters ri = tanh−1(cλi)
according to the constant c > 0 such that 〈n〉 =∑m
i=1

(cλi)
2

1−(cλi)2
. In the case of an n-node subgraph,

this can be used to maximize the probability of ob-
taining an n-fold coincidence at the output. Note
that this rescaling does not change the n-fold rela-
tive probability distribution.

4. Program the squeezers accordingly.

After following this procedure the GBS device will output
samples, n, with probability

P (n) ∝ cN |Haf(Bn)|2 (8)

where N =
∑
i ni and we assume that we are in the

collision-free regime, i.e. ni = 0, 1 ∀i. We can then feed
these samples into a classical algorithm to find dense sub-
graphs in a graph, for instance, as shown in [13].

An unavoidable imperfection in optical systems is loss.
In experiments involving single-photon states, as is the
case of standard Boson Sampling, uniform loss in the in-
terferometer can be neglected by post-selecting on the
same number of photons as we had at the input. So,
in this scenario, loss will ultimately affect our detection
rates solely, but the probability distribution at the out-
put for some n-fold detection will remain unaffected. The
situation is rather different when employing other types
of input states, for instance, single-mode squeezed vac-
uum (SMSV). In the case of GBS, it is easy to see that if
we have loss in the system, we will not have a pure state
anymore, and, therefore, C 6= 0 and we would be sam-
pling from a different distribution. The impact on how
this imperfection affects our ability to use GBS to find
dense subgraphs in a graph is studied later in Sec. V.

III. EXPERIMENT

Fig. 3 shows a schematic of the setup employed in the
experiment. A Ti:Sapphire mode-locked laser produces

BP1 ppKTP LP

FBS

ODL

LaserPP

QWP

PBS

BP2

PC

GT

(a)

(b)

PZT

VFBS

(c)

GT HWP

FIG. 3. (a) Main experiment setup. PP: pulse-picker, BP1:
bandpass filters at 775 nm, PBS: polarising beam-splitter
(Wollaston prism), BP2: bandpass filters at 1550 nm, FBS:
fibre beam splitter, VFBS: variable FBS and ODL: optical
delay line. (b) Detailed schematic of the pulse-picking sys-
tem, indicated as PP in (a). GT: Glan-Taylor polariser, PC:
Pockels cell, QWP: quarter-wave plate and HWP: half-wave
plate. (c) Detailed schematic of the free-space optical delay in
the single-loop interferometer, indicated as ODL in (a). PZT:
piezoelectric actuator.

100 fs pulses at a repetition rate of 80 MHz. A Pock-
els cell-based pulse picker is used to define the temporal
modes of interest and reject groups of pulses in order to
initialise the loop to vacuum. A pair of angle-tuned band-
pass filters shape the spectrum of the incoming pump
pulses appropriately to obtain degenerate and factorable
emission via spontaneous parametric down-conversion
(SPDC) from a type-II periodically poled potassium ti-
tanyl phosphate (ppKTP) waveguide [35–37]. The two
fields of the two-mode squeezed vacuum (TMSV) state
generated in the nonlinear process are split using a Wol-
laston prism and coupled into polarisation-maintaining
(PM) single-mode fibre. Rotating the polarisation of one
of the fields and using a fibre-based PM 50:50 beam split-
ter, we recombine the two fields to generate SMSV states.
In this case, the two output fields do not exhibit any cor-
relation and we can block one of them and use the other
for the time-bin interferometer, preserving its purity. We
send one of the outputs to the single-loop interferometer,
which consists of an evanescent-field variable fibre cou-
pler and a fibre-based loop. The length of the loop is
matched to the repetition rate of the laser by using a
free-space optical delay with a motorised stage, as shown
in Fig. 3(c). The phase of the loop is controlled using
a mirror mounted on a piezoelectric actuator. Finally,
the output state from the loop interferometer is analysed
using pseudo-photon-number resolving techniques via a
spatially-multiplexed detector.

The pulse-picking system, shown in Fig. 3(b), sets the
clock-time of the experiment and uses a repetition rate of
200 kHz. The pulse configuration of the Pockels cell lets
ten pulses of vacuum, ten occupied pulses and then ten
more pulses of vacuum. We are interested in those last 20
time-bins, comprising a total time of 250 ns. This means
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that we are restricting ourselves to an effective duty cycle
of 5% of the available pulses. We gate the timetagger
system to only record time tags in this region, reducing
the required analysis time substantially. See Appendix B
for further details on this setup.

The two fields from the SPDC are coupled into single-
mode fibres with an efficiency of ηc = 40%, without in-
cluding detection efficiencies. The main limitation here is
the mode mismatch between the fibre and the waveguide
modes, estimated to be between 60-70%. We can identify
two main sources of loss in the interferometer, the VFBS,
with a throughput of ηf = 90% and the loss in the free-
space ODL, with an efficiency of ηo = 80%. Finally, the
detection efficiency of the SNSPDs is maximised by using
fibre polarisation controllers to be on average ηd = 80%.

The purity of the output state, see Appendix A, is 98%.
Therefore, it can be well approximated by a TMSV state,
which can be expressed in the Fock basis as

|TMSV〉 =
√

1− λ2
∑
n=0

λn|n, n〉, (9)

where λ = eiθ tanh(r) and r and θ are the squeezing
and phase parameters, respectively. In the ideal case,
interfering the idler and signal modes in a beam splitter
gives an SMSV state in each output arm, namely

|SMSV〉 =
1√

cosh(r)

∞∑
n=0

√
(2n)!

2nn!

[
−eiθ tanh(r)

]n |2n〉
(10)

where the squeezing in each arm is the same as that of
the TMSV. The quality of the SMSV will be limited by
the interference visibility between the two modes from
the TMSV source. To assess this, we perform a Hong-
Ou-Mandel measurement between the two fields. From
a measurement of the marginal spectrum for each field,
see Appendix A, we observe a slight mismatch in cen-
tral wavelengths and bandwidth, leading to some distin-
guishability. The discrepancy in the bandwidth between
the two fields originates from the group velocities in pp-
KTP not being symmetric with respect to that of the
pump [35]. The Hong-Ou-Mandel measurement reveals
a visibility of 95.3(2)%, indicating good indistinguisha-
bility. We use different squeezing values for the SMSV
state, namely λ = {0.22, 0.31, 0.43}.

The main motivation behind the use of a single-loop
structure, despite its simplicity, is the ability to apply a
transformation involving a large number of modes. Fig.
4(a) shows an estimation of the transfer matrix applied
by the single-loop interferometer for φ = 0, where φ is the
phase of the loop. Due to the nature of the single-loop,
this is an upper-diagonal matrix since it is not possible
to inject a photon at time-bin i and detect it at output
j for i > j. By varying the reflectivity of the VFBS, we
can change the transformation matrix to some extent.
In this case, this was arbitrarily set to T = 50%. Like-
wise, Fig. 4(b), shows the modelled A matrix where, as
shown, the C matrix is non-zero, denoting the mixedness
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9
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g
(|U
|)

20
20
1

1 1

1 40
40

(a) (b)

4

6
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10

12

lo
g
(|A
|)

Bij

FIG. 4. (a) Transformation matrix corresponding to the single
loop transformation. (b) A matrix of the output state after
the single-loop transformation. We can clearly see that the
state corresponds to a non-pure Gaussian state, i.e. C 6= 0.
(c) (Left) Graph, GT , defined by taking the symmetric part,
B, of the A matrix modelled from the experiment as the
adjacency matrix. The blue dots indicate the fully positive
subgraph shown on the right. (Right) Fully positive subgraph,
GP , of GT given by nodes 1-10. The colorbar indicates the
weights of the edges.

of the Gaussian state. The piezoelectric actuator allows
us to change φ and perform active phase-locking, see Ap-
pendix C for details. Setting φ = 0 makes both U and
A to be real-valued matrices.

We employ a spatially-multiplexed array of eight su-
perconducting nanowire single-photon detectors to be
able to perform pseudo-photon number resolving detec-
tion. Due to the reset time of the detectors, 60 ns, being
greater than the spacing between time-bins, 12.5 ns, this
type of spatially-multiplexed detection is necessary to be
able to resolve detections in consecutive time-bins. This
will impact the output detection probability. As an ex-
ample, take the output state [1, 2] (one detection in the
first time-bin, and another in the second time-in). This
event will be less likely than [1, 10] (second detection in
the tenth time-bin) since there is a greater chance of the
detector being unresponsive due to the detector dead-
time. Employing a higher number of detectors in this
configuration would diminish this effect.

IV. RESULTS

We begin by studying the output photon statistics of
our device and quantifying the discrepancy between the
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experimental data and the theoretical model. Then, we
use the samples produced by the experimental device to
demonstrate an enhancement in the search of dense sub-
graphs when using these over using uniform random sam-
ples.

A. GBS output statistics

We model our experiment using the StrawberryFields
python package [38]. For this, we use the parameters of
the loss mentioned above, which are measured indepen-
dently or given by the manufacturer. To assess the valid-
ity of the model, we compute the total variation distance
(TVD), defined as

D(p, q) =
1

2

∑
i

|pi − qi|, (11)

where p and q are the two probability distributions we
are comparing. The TVD gives a measure of how close
the probability distributions are. It ranges from 0 to 1
for identical to completely non-overlapping distributions,
respectively. We minimise the TVD for the twofold detec-
tions to infer the value of the squeezing at the input. Af-
ter this, for the λ = 0.31 case, we obtain a TVD between
the model and the experiment, D(Pth, Pexp), of 0.0758(3)
and 0.081(1), for the twofold and threefold coincidences,
respectively, indicating the model does a good job in de-
scribing the experiment. To calculate the probabilities
from the model, we use Eq. (1). Fig. 5 shows a plot
with the (a) twofold and (b) threefold probabilities ob-
tained from the experiment and given by the model. As
can be observed, the very well defined pattern of U , with
an exponential decay, is displayed in these distributions.
In both cases, we see good agreement between the the-
ory and the experiment. The detection rates of threefold
and fourfold detections are 300 Hz and 10 Hz, respec-
tively. Note that the experiment rate is 200 kHz with a
duty cycle of 5%, limited by the Pockels cell. By over-
coming these limitations, these rates could be increased
by a factor of 20 for the same level of squeezing.

B. Finding dense subgraphs

Here we experimentally demonstrate that a GBS de-
vice can be used to enhance the search for dense sub-
graphs in a graph. For the purpose of identifying dense
subgraphs using GBS, we require the adjacency matrix
of the graph to be fully positive or negative, such that
the Haf is proportional to the density as given in Eq. (7).
For this, we focus on a subgraph of the graph defined by
the symmetric part of matrix A, i.e. the B matrix. We
choose the subgraph containing nodes 1-10, which corre-
sponds to time-bins 1-10. Fig. 4(c) shows both the com-
plete graph (left) and the fully positive subgraph defined
by nodes 1-10 (right) corresponding to the B matrix of

(b)

(a)

Detection label

0.05

0.00

0.05

Pr
ob

ab
ili

ty
Pr

ob
ab

ili
ty

Detection label
0.02

0.01

0.00

0.01

0.02

FIG. 5. Probability distribution for the twofold (a) and three-
fold (b) detections with an input squeezing of λ = 0.31. Green
bars show the theory values and orange bars the experimental
data. The x-axis detection labels are sorted in ascending order
from left to right, i.e. {[1, 1], [1, 2], . . . , [19, 20], [20, 20]} and
{[1, 1, 1], [1, 1, 2], . . . , [19, 20, 20], [20, 20, 20]}, respectively.

the λ = 0.31 case of the experiment. The complete graph
corresponds to the top left corner of A with the weights
of the edges indicated by the colouring. Since we are
interested in nondegenerate k-node subgraphs, we filter
the obtained samples to only select nondegenerate k-fold
detections. In this particular case, due to the nature
of the interferometer, this has a substantial impact on
the detection rates. After this postselection, we are left
with 107, 312 and 1802 nondegenerate fourfold samples
for λ = {0.22, 0.31, 0.43} with integration times of 8h, 3h
and 3h, respectively.

Similar to [13], we take the postselected GBS samples
and use them as seeds in a classical algorithm to search
for dense subgraphs, in this case, a random search. In
the random search algorithm, we draw n samples, each
containing k nodes, from the appropriate distribution,
calculate the density corresponding to each sample, and
select the one with the maximum density. We vary the
number of samples n drawn and, for each of these val-
ues, repeat the procedure 400 times to remove statistical
fluctuations. Fig. 6 shows the mean density obtained
as a function of the number of samples drawn for sub-
graphs of size three (a) and size four (b). We see that
in both cases the GBS-enhanced protocols perform bet-
ter than the uniform sampling case, this improvement
being more prominent in the 4-node subgraph case. To
compare the performance of the algorithm for the dif-
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ferent input seeds, we consider the number of samples
needed, on average, to find a graph whose density is 95%
of the maximum and the mean density achieved for a
given number of samples. The results are summarised
in Table I and give a quantitative value of the speedup
provided by the GBS device.

Moreover, as observed, imperfections in the experi-
ment, mostly due to optical loss, degrade the perfor-
mance of the algorithm, as indicated by the ideal curve
in (b), which would correspond to the lossless scenario.
In this case, the samples are drawn directly from the dis-
tribution given by |Haf(Bn)|2. For the threefold case,
where the Hafnian would be null due to the number of
detections being odd, we use the fourfold distribution and
remove one detection at random. Interestingly, we also
notice that when increasing the squeezing the speed at
which the curve approaches the maximum mean density
decreases. Table I quantitatively illustrates this observa-
tion. This effect is studied in more detail in Section V.

TABLE I. Comparison between the performance for the dif-
ferent sources of samples (seeds) in the random search al-
gorithm. We consider two metrics: the number of samples
needed to achieve a mean density of 95% and the density
achieved when using 50 samples.

n Seed Samples at 95% den. Density for 50 samp.
3 Ideal 34(1) 0.020(0)
3 λ = 0.22 92(3) 0.0186(1)
3 λ = 0.31 99(3) 0.0182(1)
3 λ = 0.43 117(4) 0.0180(2)
3 Stochastic 178(5) 0.0167(2)

4 Ideal 14(1) 0.0164(0)
4 λ = 0.22 62(3) 0.0153(0)
4 λ = 0.31 98(3) 0.0143(1)
4 λ = 0.43 143(5) 0.0140(1)
4 Stochastic > 260 0.0130(1)

V. LOSS AND SQUEEZING TRADE-OFF

In this section, we study how imperfections affect GBS
outputs and, in particular, impact the performance of the
classical algorithm to find dense subgraphs. In essence,
these imperfections will change the probability distribu-
tion we are drawing our samples from, but how this mod-
ifies the performance of the algorithm for this task is not
clear. Previous work [39] has focused on methods to mit-
igate the effect of loss in the probability distribution, al-
though for large systems performing the additional mea-
surements required for this strategy may prove challeng-
ing. Here, we focus on the most prominent imperfection
in conventional GBS experiments: uniform loss at the in-
put. We acknowledge that other errors such as deviations
from the expected unitary or mode-dependent losses are
also possible, but we leave these for future work.
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FIG. 6. (a) Density of the 3-node subgraph as a function of
the number of samples chosen. The inset shows the probabil-
ity distribution for the nondegenerate output states of the ex-
perimental samples (orange filling) and the theoretical model
(green edge). (b) Density of the 4-node subgraph as a func-
tion of the number of samples. The purple line indicates a
uniform random search, the blue, orange and green lines use
samples obtained from the GBS experiment for different val-
ues of the squeezing as indicated in the legend, and the brown
line indicates samples obtained when sampling from the distri-
bution obtained from |Haf(Bn)|2. The dashed line indicates
the density of the densest subgraph. The search speed de-
creases when increasing the squeezing. This effect is further
studied in Sec. V.

To study the role of imperfections we use the general
following procedure

1. Construct the graph for which dense subgraphs are
to be found. It is generated by creating two Erdos-
Renyi graphs, a small one with high edge proba-
bility and a larger one with low edge probability.
Then we connect the nodes of the smaller graph to
the nodes of the larger one at random [13].

2. We perform a Takagi-Autonne decomposition to
obtain the squeezing parameters and unitary ma-
trices that encode this graph onto the GBS device.
We appropriately rescale the squeezing values to
change the mean photon number per mode at the
output.

3. Modify the circuit appropriately, e.g. adding opti-
cal loss at the modes, to effectively study how the
imperfections affect the output probabilities. We
investigate how this probability distribution devi-
ates from the lossless case.

4. Generate samples according to those probabilities
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FIG. 7. (a) TVD and runs/samples as a function of the input loss for several mean photon numbers per mode at the output.
(b) Density as a function of the number of samples used in the random search algorithm for several mean photon numbers
indicated in the legend of (a). The different colours correspond to different input losses in the system while the black curve
shows the performance of the algorithm when using uniform random samples. (c) Number of samples (solid) and runs (dashed)
needed to achieve a certain mean density, defined by the black dashed line in (b), as a function of the input loss for several
mean photon numbers. The shaded areas correspond to one standard deviation of the mean. The black line indicates the
density achieved by the algorithm when using samples drawn directly from the adjacency matrix of the graph and the red line
corresponds to uniform drawn samples. The shaded areas correspond to one standard deviation of the mean.

and feed them into the random search algorithm
previously described to find dense subgraphs. Re-
peat this for a different number of input samples.

5. Find the number of samples needed to achieve a
mean density over the n repetitions to be above
a certain threshold and the density achieved with
some number of samples.

Here, we focus on a graph consisting of 26 nodes, where
six of these have been implanted in the graph. The pa-
rameters used to generate these Erdos-Renyi graphs are:
NA = 20, NB = 6, pA = 0.3 and pB = 0.875, where pi is
the probability of two vertices in graph i ∈ {A,B} to be
connected by an edge. For the random search algorithm,
we repeat the search for 1000 iterations to minimise sta-
tistical fluctuations on the mean as much as possible.

First, we focus on how these imperfections modify the
normalised probability distribution for a given n-fold de-
tection. To evaluate this, we use the TVD, shown in
Eq. (11). In other types of experiments, where we
have a well-defined number of input photons, e.g. Bo-
son Sampling, these probability distributions remain in-
dependent of loss. Fig. 7(a) shows the TVD and the
average number of runs needed to obtain a 6-fold sam-
ple, i.e. 1/p(6) where p(6) is the probability to obtain a
collision-free 6-fold detection at the output, as a function
of the loss for several mean photon numbers per mode, i.e.
〈n〉 = 1/m

∑
i〈ni〉 where m is the number of modes. We

observe that as the loss increases, the deviation from the
lossless case is more pronounced for those cases in which
the squeezing was high, whereas much smaller for those
cases where the squeezing was low. When the squeezing
is low, we can truncate the superposition of even number
Fock states at |n〉 → 2, in the low squeezing limit, and,
hence, the impact of higher-order photon numbers being
affected by loss is negligible.

Considering the number of runs per 6-fold sample,
runs/sample from hereon, we see that the degradation

in the TVD presents a clear trade-off between state fi-
delity to the lossless case and detection rates. We pro-
ceed to study how this trade-off manifests in the search
for dense subgraphs and if, at some point, allowing more
runs/samples can lead to a substantial decrease in the
TVD that is beneficial to this problem. As mentioned,
an alternative to reducing the squeezing may be error
mitigation [39]. This procedure involves either changing
the experimental loss parameter to interpolate the mea-
surements or performing classical postprocessing of the
data.

Similar to Fig. 6, Fig. 7(b) shows the density obtained
with n samples using a random search algorithm for sev-
eral values of input loss (different line colours) and dif-
ferent mean photon numbers (different line styles). The
grey dashed line indicates the value for the density we
use to calculate the data shown in Fig. 7(c). As observed,
for a constant value of the loss, the performance of the
algorithm diminishes with increasing values of squeez-
ing, in good agreement with the experimental observa-
tions. Fig. 7(c) shows the point where the mean density
achieved by each of the curves in (b) crosses the dashed
line, i.e. achieves a mean value of 75 %, as a function
of loss for different mean photon numbers. The speed
at which the algorithm reaches a certain value for the
mean density degrades as a function of the input loss for
high squeezing values, but it remains unaffected when
the squeezing is small. Note that in all cases, the GBS
device still outperforms the uniform sampling approach
indicated by the solid grey line. The dashed lines indicate
the number of experimental runs needed to achieve the
required number of samples needed to obtain a mean den-
sity. As shown, because the number of runs/sample in-
creases exponentially with the mean photon number 〈n〉,
in the regime we have studied, increasing the squeezing
reduces the number of runs needed, in general. Due to
the statistical noise of the algorithm, it is hard to extract
conclusions for regimes where the variations between av-
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erage photon numbers are small. These results indicate
that for large-scale dense subgraph searches, where high
squeezing values are required, careful consideration of the
impact of loss is needed. In some instances, it might even
be advantageous to reduce the squeezing to get closer to
the lossless case distribution, despite the sacrifice in de-
tection rates.

VI. CONCLUSIONS

To summarise, we used a time-bin architecture to
experimentally demonstrate that samples from a GBS
device can be used to enhance the search for dense
subgraphs over uniform random sampling techniques.
We employed a time-bin interferometer and a source of
SMSV to detect samples with up to four photons. The
use of a time-bin configuration as opposed to a spatial
mode interferometer allowed us to scale up the number
of modes in a straightforward manner. From the gener-
ated symmetric B matrix, we identified a fully positive
submatrix and mapped it into a graph through its ad-
jacency matrix. By post selecting samples contained in
the rows and columns of such submatrix, we showed that
when feeding the random search algorithm with those
samples, the speed at which we can find dense subgraphs
is enhanced over uniform random samples.

We repeat this procedure for three different squeezing
parameters, observing a degradation of the algorithm’s
performance with increasing squeezing. To understand
this, we numerically studied the role of input loss in a
GBS experiment and found that the TVD with respect to
the lossless case increases when using a higher squeezing.
We then investigated the impact of this in the search for
dense subgraphs problem and showed that there exists a
trade-off between squeezing and algorithm speed for high
values of input loss. This is in good agreement with the
experimental observations.

This work constitutes the first experimental demon-
stration of the implementation of GBS in a time-bin en-
coded architecture and of how a GBS device can be em-
ployed to speed up the search of dense subgraphs. We
hope this work can motivate other research groups to
scale up this application to the regime where using a
GBS device gives a quantum advantage. In this sense,
in-depth consideration of what the consequences of im-
perfections are in near-term applications using GBS de-
vices is needed.

Time-bin encoded GBS, in a fibre-based interferome-
ter, offers many practical advantages for achieving quan-
tum speedups in certain application areas. Our work
should encourage further theoretical studies of compu-
tational problems which map onto this architecture. It
will stimulate the engineering of integrated fibre-based
squeezed light sources [40] as well as low-loss switching,
which is essential for performing arbitrary operations on
time-bin encoded states.
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FIG. 8. (a) Joint spectral amplitude of the source. The col-
orbar indicates the number of counts. (b) Hong-Ou-Mandel
interference between the idler and the signal. The error bars
are derived from the Poissonian statistical error. The visibil-
ity is 95.3(2)%. (c) Histogram of the counts at the unused
output port of the FBS, demonstrating the effectiveness of
the pulse-picking system. (d) Twofold coincidences compar-
ing the cases where we let the phase inside the loop fluctuate
naturally (orange) and when we perform phase-locking (blue).
The black line in the histogram indicates the fluctuations due
to Poissonian statistics.
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Appendix A: Source characterization

Here, we provide additional details about the source
used to generate SMSV states. Fig. 8(a) shows the joint
spectral intensity (JSI). The emission is degenerate and
factorable, showing a purity of P = 98%. This mea-
surement was performed using a time-of-flight spectrom-
eter implemented using dispersion-compensating fibers
followed by single-photon detectors. Fig. 8(b) shows
the Hong-Ou-Mandel interference between the idler and
signal fields from the source. This is implemented by
measuring coincidences at the output of the beam split-
ter (FBS) in Fig. 3 when working in the low-squeezing
regime. We obtain a visibility of 95.3(2)%, defined as
(Cmax − Cmin)/Cmax.
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Appendix B: Pulse picker system

Fig. 3(b) shows a detailed schematic of the pulse-
picking system. The beam passes through a Glan-Taylor
(GT) polariser whose polarization axis is aligned with
the light coming from the laser, then a half-wave plate
(HWP) is used to set the polarization of the beam at
45◦ with respect to the optic-axis of the crystal of the
Pockels cell. The Pockels cell consists of an X-cut 20
mm rubydium-tantalate phospate (RTP) crystal with an
aperture of 3 mm and Vπ ∼ 1kV. The high-voltage driver
of the Pockels cell is driven by a pulse generator at a
repetition rate of 200 kHz. A quarter-wave plate (QWP)
compensates for the natural birefrigence of the RTP crys-
tal followed by another GT. The system is arranged in
a double-pass configuration, to further increase the ex-
tinction ratio. Using it in this configuration we observe
an extinction ratio of 1 : 105. The overall transmission
through the system is 70%. Fig. 8(c) shows a histogram
of the counts after the pulse picker.

Appendix C: Phase-locking

Here we provide more details on the phase-locking.
The probability of obtaining a coincidence at the out-
put of the single-loop depends on the phase of the loop
φ. We employ a piezoeletric stack (PK25FA2P2) with a
maximum displacement, with no load, of 12 µm. We glue
a 1/2” mirror to it and use a 0-75V amplifier driven by
a NI DAQ card to control the voltage. We find that best
results, in terms of optical alignment, without compro-
mising the phase stability are achieved when driving the
piezo in the range of 0-7 V. To perform the phase-locking,
we use a PID controller where the error signal is obtained
from a pregenerated calibration signal. We integrate the
counts for 150 ms and update the voltage according to
the PID outcome. Fig. 4(d) shows a comparison between
the phase when we let it evolve naturally as opposed to
when we actively control it. The standard deviation of
the fluctuations when performing phase-locking is 2σP ,
where σP is the standard deviation due to counting statis-
tics.

[1] M. A. Nielsen and I. L. Chuang, Cambridge University
Press (2010).

[2] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura,
C. Monroe, and J. L. O’Brien, Quantum computers
(2010).

[3] P. W. Shor, SIAM Journal on Computing 26, 1484
(1997), arXiv:9508027 [quant-ph].

[4] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C.
Bardin, R. Barends, R. Biswas, S. Boixo, F. G. Bran-
dao, D. A. Buell, B. Burkett, Y. Chen, Z. Chen,
B. Chiaro, R. Collins, W. Courtney, A. Dunsworth,
E. Farhi, B. Foxen, A. Fowler, C. Gidney, M. Giustina,
R. Graff, K. Guerin, S. Habegger, M. P. Harrigan,
M. J. Hartmann, A. Ho, M. Hoffmann, T. Huang,
T. S. Humble, S. V. Isakov, E. Jeffrey, Z. Jiang,
D. Kafri, K. Kechedzhi, J. Kelly, P. V. Klimov, S. Knysh,
A. Korotkov, F. Kostritsa, D. Landhuis, M. Lind-
mark, E. Lucero, D. Lyakh, S. Mandrà, J. R. Mc-
Clean, M. McEwen, A. Megrant, X. Mi, K. Michielsen,
M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill,
M. Y. Niu, E. Ostby, A. Petukhov, J. C. Platt, C. Quin-
tana, E. G. Rieffel, P. Roushan, N. C. Rubin, D. Sank,
K. J. Satzinger, V. Smelyanskiy, K. J. Sung, M. D. Tre-
vithick, A. Vainsencher, B. Villalonga, T. White, Z. J.
Yao, P. Yeh, A. Zalcman, H. Neven, and J. M. Martinis,
Nature 574, 505 (2019).

[5] H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-
C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu,
P. Hu, X.-Y. Yang, W.-J. Zhang, H. Li, Y. Li, X. Jiang,
L. Gan, G. Yang, L. You, Z. Wang, L. Li, N.-L. Liu, C.-
Y. Lu, and J.-W. Pan, Science, Tech. Rep. 6523 (2020)
arXiv:2012.01625.

[6] V. Saggio, B. E. Asenbeck, A. Hamann, T. Strömberg,
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