39 research outputs found

    Dynamics of a polyelectrolyte through aerolysin channel as a function of applied voltage and concentration

    No full text
    International audienceWe describe the behaviour of a polyelectrolyte in confined geometry. The transport of a polyelectrolyte, dextran sulfate, through a recombinant protein channel, aerolysin, inserted into a planar lipid bilayer is studied as a function of applied voltage and polyelectrolyte concentration and chain length. The aerolysin pore has a weak geometry asymmetry, a high number of charged residues and the polyelectrolyte is strongly negatively charged. The resulting current blockades were characterized by short and long dwelling times. Their frequency varies exponentially as a function of applied voltage and linearly as a function of polyelectrolyte concentration. The long blockade duration decreases exponentially when the electrical force increases. The ratio of the population of short events to the one of long events decreases when the applied voltage increases and displays an exponential variation. The long residence time increases with the polyelectrolyte chain length. We measure a reduction of the effective charge of the polyelectrolyte at the pore entry and inside the channel. For a fixed applied voltage, + / - 100 mV, at both sides of the protein pore entrance, the events frequency is similar as a function of dextran sulfate concentration. The mean blockade durations are independent of polyelectrolyte concentration and are similar for both entrances of the pore and remain constant as a function of the electrical force

    Sensing Proteins through Nanopores: Fundamental to Applications

    No full text
    International audienceProteins subjected to an electric field and forced to pass through a nanopore induce blockades of ionic current that depend on the protein and nanopore characteristics and interactions between them. Recent advances in the analysis of these blockades have highlighted a variety of phenomena that can be used to study protein translocation and protein folding, to probe single-molecule catalytic reactions in order to obtain kinetic and thermodynamic information, and to detect protein–antibody complexes, proteins with DNA and RNA aptamers, and protein–pore interactions. Nanopore design is now well controlled, allowing the development of future biotechnologies and medicine applications

    Kinetics of Enzymatic Degradation of High Molecular Weight Polysaccharides through a Nanopore: Experiments and Data-Modeling

    No full text
    International audienceThe enzymatic degradation of long polysaccharide chains is monitored by nanopore detection. It follows a Michaelis–Menten mechanism. We measure the corresponding kinetic constants at the single molecule level. The simulation results of the degradation process allowed one to account for the oligosaccharide size distribution detected by a nanopore

    Probing driving forces in aerolysin and α-hemolysin biological nanopores: electrophoresis versus electroosmosis

    No full text
    International audienceThe transport of macromolecules through nanopores is involved in many biological functions and is today at the basis of promising technological applications. Nevertheless the interpretation of the dynamics of the macromolecule/nanopore interaction is still misunderstood and under debate. At the nanoscale, inside biomimetic channels under an external applied voltage, electrophoresis, which is the electric force acting on electrically charged molecules, and electroosmotic flow (EOF), which is the fluid transport associated with ions, contribute to the direction and magnitude of the molecular transport. In order to decipher the contribution of the electrophoresis and electroosmotic flow, we explored the interaction of small, rigid, neutral molecules (cyclodextrins) and flexible, non-ionic polymers (poly(ethylene glycol), PEG) that can coordinate cations under appropriate experimental conditions, with two biological nanopores: aerolysin (AeL) and α-hemolysin (aHL). We performed experiments using two electrolytes with different ionic hydration (KCl and LiCl). Regardless of the nature of the nanopore and of the electrolyte, cyclodextrins behaved as neutral analytes. The dominant driving force was attributed to EOF, acting in the direction of the anion flow and stronger in LiCl than in KCl. The same qualitative behaviour was observed for PEGs in LiCl. In contrast, in KCl, PEGs behaved as positively charged polyelectrolytes through both AeL and aHL. Our results are in agreement with theoretical predictions about the injection of polymers inside a confined geometry (ESI). We believe our results to be of significant importance for better control of the dynamics of analytes of different nature through biological nanopores

    Identification of single amino acid differences in uniformly charged homopolymeric peptides with aerolysin nanopore

    Get PDF
    International audienceThere are still unmet needs in finding new technologies for biomedical diagnostic and industrial applications. A technology allowing the analysis of size and sequence of short peptide molecules of only few molecular copies is still challenging. The fast, low-cost and label-free single-molecule nanopore technology could be an alternative for addressing these critical issues. Here, we demonstrate that the wild-type aerolysin nanopore enables the size-discrimination of several short uniformly charged homopeptides, mixed in solution, with a single amino acid resolution. Our system is very sensitive, allowing detecting and characterizing a few dozens of peptide impurities in a high purity commercial peptide sample, while conventional analysis techniques fail to do so

    Protein Unfolding Through Nanopores

    No full text
    International audienceIn this mini-review we introduce and discuss a new method, at single molecule level, to study the protein fold-ing and protein stability, with a nanopore coupled to an electric detection. Proteins unfolded or partially folded passing through one channel submitted to an electric field, in the presence of salt solution, induce different detectable blockades of ionic current. Their duration depends on protein conformation. For different studies proteins through nanopores, com-pletely unfolded proteins induce only short current blockades. Their frequency increases as the concentration of denatur-ing agent or temperature increases, following a sigmoidal denaturation curve. The geometry or the net charge of the nanopores does not alter the unfolding transition, sigmoidal unfolding curve and half denaturing concentration or half temperature denaturation. A destabilized protein induces a shift of the unfolding curve towards the lower values of the de-naturant agent compared to the wild type protein.Partially folded proteins exhibit very long blockades in nanopores. The blockade duration decreases when the concentration of denaturing agent increases. The variation of these blockades could be associated to a possible glassy behaviour

    Evidence of Unfolded Protein Translocation through a Protein Nanopore

    No full text
    We thank Laurent Bacri for useful discussions and his expertise in data analysis. We thank Micayla Bowman for kindly correcting the language of the manuscript.International audienceProtein nanopores are mainly used to study transport, unfolding, intrinsically disordered proteins, protein-pore interactions, and protein - ligand complexes. This single-molecule sensor for biomedical and biotechnological applications is promising but until now direct proof of protein translocation through a narrow channel is lacking. Here, we report the translocation of a chimera molecule through the aerolysin nanopore in the presence of a denaturing agent, guanidium chloride (1.5 M) and KCl (1 M). The chimera molecule is composed of the recombinant MalE protein with a unique cysteine residue at the C-terminal position covalently linked to a single-stranded DNA oligonucleotide. Real-time polymerase chain reaction (PCR) was used to detect the presence of chimera molecules that have been effectively translocated from the cis to trans chamber of the set up. Comparing the electrical signature of the chimera related to the protein or oligonucleotide alone demonstrates that each type of molecule displays different dynamics in term of transport time, event frequency, and current blockade. This original approach provides the possibility to study protein translocation through different biological, artificial, and biomimetic nanopores or nanotubes. New future applications are now conceivable such as protein refolding at the nanopore exit, peptides and protein sequencing, and peptide characterization for diagnostics. (Graph Presented)
    corecore