59 research outputs found

    Virus prevalence and genetic diversity across a wild bumblebee community

    Get PDF
    Viruses are key population regulators, but we have limited knowledge of the diversity and ecology of viruses. This is even the case in wild host populations that provide ecosystem services, where small fitness effects may have major ecological impacts in aggregate. One such group of hosts are the bumblebees, which have a major role in the pollination of food crops and have suffered population declines and range contractions in recent decades. In this study, we investigate the diversity of four recently discovered bumblebee viruses (Mayfield virus 1, Mayfield virus 2, River Liunaeg virus and Loch Morlich virus), and two previously known viruses that infect both wild bumblebees and managed honeybees (Acute bee paralysis virus and Slow bee paralysis virus) from isolates in Scotland. We investigate the ecological and environmental factors that determine viral presence and absence. We show that the recently discovered bumblebee viruses were more genetically diverse than the viruses shared with honeybees. Coinfection is potentially important in shaping prevalence: we found a strong positive association between River Liunaeg virus and Loch Morlich virus presence after controlling for host species, location and other relevant ecological variables. We tested for a relationship between environmental variables (temperature, UV radiation, wind speed and prevalence), but as we had few sampling sites, and thus low power for site-level analyses, we could not conclude anything regarding these variables. We also describe the relationship between the bumblebee communities at our sampling sites. This study represents a first step in the description of predictors of bumblebee infection in the wild

    Evaluating the effects of SARS-CoV-2 Spike mutation D614G on transmissibility and pathogenicity

    Get PDF
    SummaryGlobal dispersal and increasing frequency of the SARS-CoV-2 Spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of Spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large data set, well represented by both Spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the Spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant.</jats:p

    Northern Gannet foraging trip length increases with colony size and decreases with latitude

    Get PDF
    Density-dependent competition for food influences the foraging behaviour and demography of colonial animals, but how this influence varies across a species’ latitudinal range is poorly understood. Here we used satellite tracking from 21 Northern Gannet Morus bassanus colonies (39% of colonies worldwide, supporting 73% of the global population) during chick-rearing to test how foraging trip characteristics (distance and duration) covary with colony size (138–60 953 breeding pairs) and latitude across 89% of their latitudinal range (46.81–71.23° N). Tracking data for 1118 individuals showed that foraging trip duration and maximum distance both increased with square-root colony size. Foraging effort also varied between years for the same colony, consistent with a link to environmental variability. Trip duration and maximum distance also decreased with latitude, after controlling for colony size. Our results are consistent with density-dependent reduction in prey availability influencing colony size and reveal reduced competition at the poleward range margin. This provides a mechanism for rapid population growth at northern colonies and, therefore, a poleward shift in response to environmental change. Further work is required to understand when and how colonial animals deplete nearby prey, along with the positive and negative effects of social foraging behaviour

    Evaluating the effects of SARS-CoV-2 Spike mutation D614G on transmissibility and pathogenicity

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 Spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of Spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large data set, well represented by both Spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the Spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity.

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant

    The Family Working Time Model: Toward More Gender Equality in Work and Care

    Full text link
    Since the millennium, the labor market participation of women and mothers is increasing across European countries. Several work/care policy measures underlie this evolution. At the same time, the labor market behavior of men and fathers, as well as their involvement in care work, is relatively unchanging, meaning that employed mothers are facing an increased burden with respect to gainful employment and providing care. We propose a family working time model that incentivizes fathers and mothers to both work in extended part-time employment. It provides a benefit in form of a lumpsum transfer or income replacement for each parent if, and only if, both parents work 30 hours per week. Thus, it explicitly addresses fathers and - contrary to most conventional family policies - actively promotes the dual earner/dual carer paradigm. Combining microsimulation and labor supply estimation, we empirically analyze the potential of the family working time model in the German context. The relatively small share of families already choosing the symmetric distribution of about 30 working hours would increase by 60 per cent. By showing that a lump-sum transfer especially benefits low-income families, we contribute to the debate about redistributive implications of family policies. The basic principles of the model generalize to other European countries where families increasingly desire an equal distribution of employment and care. In order to enhance the impact of such a policy, employers' norms and workplace culture as well as the supply of high-quality childcare must catch-up with changing workforce preferences

    Publisher Correction: SARS-CoV-2 Omicron is an immune escape variant with an altered cell entry pathway (Nature Microbiology, (2022), 7, 8, (1161-1179), 10.1038/s41564-022-01143-7)

    Get PDF
    In the version of this article initially published, the author affiliation information was incomplete, neglecting to note that Brian J. Willett, Joe Grove, Oscar A. MacLean, Craig Wilkie, Giuditta De Lorenzo, Wilhelm Furnon, Diego Cantoni, Sam Scott, Nicola Logan and Shirin Ashraf contributed equally and that John Haughney, David L. Robertson, Massimo Palmarini, Surajit Ray and Emma C. Thomson jointly supervised the work, as now indicated in the HTML and PDF versions of the article

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant
    corecore