725 research outputs found
Home-based rehabilitation: Physiotherapy student and client perspectives
Background. Home-based rehabilitation (HBR) in under-resourced areas in a primary healthcare (PHC) context exposes students to the real-life situations of their clients. There is a scarcity of literature on student and client experiences of HBR in the physiotherapy context. Increased knowledge of HBR could result in an enhanced experience for both student and client. This study sought to discover the perceptions of final-year physiotherapy students and their clients relating to their experiences of HBR during a PHC placement in a resource-constrained setting.Objectives. To explore the experiences and perceptions of physiotherapy students and their clients regarding HBR as part of clinical training in resource-constrained settings. To discover the barriers to and facilitators of effective HBR.Methods. An exploratory case study was performed. A qualitative phenomenologicalresearch design in the interpretivist paradigm was used. Semistructured interviews were conducted with clients (n=7) living in an under-resourced setting, who had received HBR from physiotherapy students. Paired interviews were conducted with final-year physiotherapy students (n=6) after their HBR placement.Results. Clients appreciated the students’ services; however, data revealed communication barriers and unmet expectations. Students reported struggling to adapt to the context, resulting in interventions not being sufficiently client-centred. They voiced a need for language competency and earlier exposure to such contexts.Conclusion. Exposure to real-life situations in under-resourced settings in HBR provides valuable situated and authentic learning opportunities for physiotherapy students. The experience can be useful in preparing graduates to address the needs of the populations they serve during community service
Recommended from our members
Constraining uncertainty in aerosol direct forcing
The uncertainty in present-day anthropogenic forcing is dominated by uncertainty in the strength of the contribution from aerosol. Much of the uncertainty in the direct aerosol forcing can be attributed to uncertainty in the anthropogenic fraction of aerosol in the present-day atmosphere, due to a lack of historical observations. Here we present a robust relationship between total present-day aerosol optical depth and the anthropogenic contribution across three multi-model ensembles and a large single-model perturbed parameter ensemble. Using observations of aerosol optical depth, we determine a reduced likely range of the anthropogenic component and hence a reduced uncertainty in the direct forcing of aerosol
An Unusual Presentation of Endocarditis Caused by Staphylococcus warneri
Staphylococcus warneri does not generally cause serious infections in humans. We report a case of endocarditis in a healthy individual with no known past medical history. S. warneri was identified in her blood cultures and echocardiographic evidence confirmed the diagnosis of bacterial endocarditis. There was no apparent cause for her infection, and risk factors such as invasive treatment or medical implant were not present. This rare clinical presentation illustrates the importance of not overlooking low virulence species of Staphylococcus, as they can potentially serve as opportunistic etiological agents for endocarditis, especially among the elderly population
It Takes a Community to Raise the Prevalence of a Zoonotic Pathogen
By definition, zoonotic pathogens are not strict host-species specialists in that they infect humans and at least one nonhuman reservoir species. The majority of zoonotic pathogens infect and are amplified by multiple vertebrate species in nature, each of which has a quantitatively different impact on the distribution and abundance of the pathogen and thus on disease risk. Unfortunately, when new zoonotic pathogens emerge, the dominant response by public health scientists is to search for a few, or even the single, most important reservoirs and to ignore other species that might strongly influence transmission. This focus on the single “primary” reservoir host species can delay biological understanding, and potentially public health interventions as species important in either amplifying or regulating the pathogen are overlooked. Investigating the evolutionary and ecological strategy of newly discovered or emerging pathogens within the community of potential and actual host species will be fruitful to both biological understanding and public health
Improving precision and reducing bias in biological surveys: estimating false-negative error rates
The use of presence/absence data in wildlife management and biological surveys is widespread. There is a growing interest in quantifying the sources of error associated with these data. We show that false-negative errors (failure to record a species when in fact it is present) can have a significant impact on statistical estimation of habitat models using simulated data. Then we introduce an extension of logistic modeling, the zero-inflated binomial (ZIB) model that permits the estimation of the rate of false-negative errors and the correction of estimates of the probability of occurrence for false-negative errors by using repeated. visits to the same site. Our simulations show that even relatively low rates of false negatives bias statistical estimates of habitat effects. The method with three repeated visits eliminates the bias, but estimates are relatively imprecise. Six repeated visits improve precision of estimates to levels comparable to that achieved with conventional statistics in the absence of false-negative errors In general, when error rates are less than or equal to50% greater efficiency is gained by adding more sites, whereas when error rates are >50% it is better to increase the number of repeated visits. We highlight the flexibility of the method with three case studies, clearly demonstrating the effect of false-negative errors for a range of commonly used survey methods
Fluorescence decay in aperiodic Frenkel lattices
We study motion and capture of excitons in self-similar linear systems in
which interstitial traps are arranged according to an aperiodic sequence,
focusing our attention on Fibonacci and Thue-Morse systems as canonical
examples. The decay of the fluorescence intensity following a broadband pulse
excitation is evaluated by solving the microscopic equations of motion of the
Frenkel exciton problem. We find that the average decay is exponential and
depends only on the concentration of traps and the trapping rate. In addition,
we observe small-amplitude oscillations coming from the coupling between the
low-lying mode and a few high-lying modes through the topology of the lattice.
These oscillations are characteristic of each particular arrangement of traps
and they are directly related to the Fourier transform of the underlying
lattice. Our predictions can be then used to determine experimentally the
ordering of traps.Comment: REVTeX 3.0 + 3PostScript Figures + epsf.sty (uuencoded). To appear in
Physical Review
A novel codon insert in protease of clade B HIV type 1.
A novel combination of three codon inserts in the pol coding region of HIV-1 RNA was identified in a highly antiretroviral experienced study subject with HIV-1 infection. A one codon insert was observed in the protease region between codon 40 and 41 simultaneously with a two codon insert present in the reverse transcriptase region at codon 69
Structure, magnetic and transport properties of Ti-substituted La0.7Sr0.3MnO3
Ti-substituted perovskites, La0.7Sr0.3Mn1-xTixO3, with x between 0 to 0.20,
were investigated by neutron diffraction, magnetization, electric resistivity,
and magnetoresistance (MR) measurements. All samples show a rhombohedral
structure (space group R3c) from 10 K to room temperature. At room temperature,
the cell parameters a, c and the unit cell volume increase with increasing Ti
content. However, at 10 K, the cell parameter a has a maximum value for x =
0.10, and decreases for x greater than 0.10, while the unit cell volume remains
nearly constant for x greater than 0.10. The average (Mn,Ti)-O bond length
increases up to x=0.15, and the (Mn,Ti)-O-(Mn,Ti) bond angle decreases with
increasing Ti content to its minimum value at x=0.15 at room temperature. Below
the Curie temperature T_C, the resistance exhibits metallic behavior for the x
_ 0.05 samples. A metal (semiconductor) to insulator transition is observed for
the x_ 0.10 samples. A peak in resistivity appears below T_C for all samples,
and shifts to a lower temperature as x increases. The substitution of Mn by Ti
decreases the 2p-3d hybridization between O and Mn ions, reduces the bandwidth
W, and increases the electron-phonon coupling. Therefore, the TC shifts to a
lower temperature and the resistivity increases with increasing Ti content. A
field-induced shift of the resistivity maximum occurs at x less than or equal
to 0.10. The maximum MR effect is about 70% for La0.7Sr0.3Mn0.8Ti0.2O3. The
separation of TC and the resistivity maximum temperature Tmax enhances the MR
effect in these compounds due to the weak coupling between the magnetic
ordering and the resistivity as compared with La0.7Sr0.3MnO3.Comment: zip fil
- …