9,508 research outputs found

    Support for the value 5/2 for the spin glass lower critical dimension at zero magnetic field

    Get PDF
    We study numerically various properties of the free energy barriers in the Edwards-Anderson model of spin glasses in the low-temperature region both in three and four spatial dimensions. In particular, we investigated the dependence of height of free energy barriers on system size and on the distance between the initial and final states (i.e. the overlap distance). A related quantity is the distribution of large local fluctuations of the overlap in large three-dimensional samples at equilibrium. Our results for both quantities (barriers and large deviations) are in agreement with the prediction obtained in the framework of mean field theory. In addition, our result supports Dlc=2.5D_{lc}=2.5 as the lower critical dimension for the model.Comment: 11 pages, 4 figures. To appear in PNA

    On the origin of ultrametricity

    Full text link
    In this paper we show that in systems where the probability distribution of the the overlap is non trivial in the infinity volume limit, the property of ultrametricity can be proved in general starting from two very simple and natural assumptions: each replica is equivalent to the others (replica equivalence or stochastic stability) and all the mutual information about a pair of equilibrium configurations is encoded in their mutual distance or overlap (separability or overlap equivalence).Comment: 13 pages, 1 figur

    On the Effects of Changing the Boundary Conditions on the Ground State of Ising Spin Glasses

    Full text link
    We compute and analyze couples of ground states of 3D spin glass systems with the same quenched noise but periodic and anti-periodic boundary conditions for different lattice sizes. We discuss the possible different behaviors of the system, we analyze the average link overlap, the probability distribution of window overlaps (among ground states computed with different boundary conditions) and the spatial overlap and link overlap correlation functions. We establish that the picture based on Replica Symmetry Breaking correctly describes the behavior of 3D Spin Glasses.Comment: 25 pages with 11 ps figures include

    Evidence for existence of many pure ground states in 3d ±J\pm J Spin Glasses

    Full text link
    Ground states of 3d EA Ising spin glasses are calculated for sizes up to 14314^3 using a combination of genetic algorithms and cluster-exact approximation . The distribution P(q)P(|q|) of overlaps is calculated. For increasing size the width of P(q)P(|q|) converges to a nonzero value, indicating that many pure ground states exist for short range Ising spin glasses.Comment: 4 pages, 3 figures, 2 tables, 16 reference

    Imaging the environmental ultraviolet

    Get PDF
    A technique has been developed to visually represent measured environmental ultraviolet radiation using a digital photograph and measurements of the UV and visible light intensity. The method involves the use of a personal pocket UV meter, an optional lux meter and a simple image processing technique to present visual images that are weighted to the ambient ultraviolet, providing images that highlight regions of high ultraviolet intensity that can be compared with a visible photograph. The technique described, provides a method students can follow to better develop an understanding of the potentially harmful ultraviolet irradiance with respect to visible daylight, indicating that the ambient ultraviolet and visible environment are not directly related, with ultraviolet intensity being dependent on many different factors and not the visual brightness of the location alone

    Smooth Muscle Myosin Heavy Chain Isoform Distribution in the Swine Stomach

    Get PDF
    To evaluate the distribution of smooth muscle myosin heavy chain isoforms (SMB, with head insert), we examined frozen sections from the various regions of swine stomachs using isoform-specific antibodies. We previously reported variable SMB myosin heavy chain (MHC) expression in stomach cells that correlates with unloaded shortening velocities. This is consistent with the generalization of tonic fundic muscle having low expression and phasic antral muscle having high expression of the SMB MHC isoform. Using immunohistochemistry (IHC), we show a progression of the SMB MHC from very low immunoreactivity in the fundus to very intense immunoreactivity in the antrum. In the body, the average level of SMB MHC immunoreactivity lies between that of the antrum and fundus. Intercellular heterogeneity was observed in all stomach regions to a similar extent. However, the intercellular range in SMB MHC immunoreactivity decreases from fundus to antrum. All stomach regions show isolated pockets or clusters of cells with similar SMB MHC immunoreactivity. There is a non-uniform intracellular immunoreactivity in SMB MHC, with many cells showing greater-intensity staining of SMB MHC in their cell peripheries. This information may prove useful in helping to elucidate possible unique physiological roles of SMB MHC

    Sequential evacuation strategy for multiple rooms toward the same means of egress

    Get PDF
    This paper examines different evacuation strategies for systems where several rooms evacuate trough the same means of egress, using microscopic pedestrian simulation.As a case study, a medium-rise office building is considered. It was found that the standard strategy, whereby the simultaneous evacuation of all levels is performed, can be improved by a sequential evacuation, beginning with the lowest floor and continuing successively with each one of the upper floors after a certain delay. The importance of the present research is that it provides the basis for the design and implementation of new evacuation strategies and alarm systems that could significantly improve the evacuation of multiple rooms trough a common means of escape.Comment: 8 pages, 4 figure

    Small Window Overlaps Are Effective Probes of Replica Symmetry Breaking in 3D Spin Glasses

    Full text link
    We compute numerically small window overlaps in the three dimensional Edwards Anderson spin glass. We show that they behave in the way implied by the Replica Symmetry Breaking Ansatz, that they do not qualitatively differ from the full volume overlap and do not tend to a trivial function when increasing the lattice volume. On the contrary we show they are affected by small finite volume effects, and are interesting tools for the study of the features of the spin glass phase.Comment: 9 pages plus 5 figure
    corecore