7,962 research outputs found
Experimental realization of plaquette resonating valence bond states with ultracold atoms in optical superlattices
The concept of valence bond resonance plays a fundamental role in the theory
of the chemical bond and is believed to lie at the heart of many-body quantum
physical phenomena. Here we show direct experimental evidence of a
time-resolved valence bond quantum resonance with ultracold bosonic atoms in an
optical lattice. By means of a superlattice structure we create a
three-dimensional array of independent four-site plaquettes, which we can fully
control and manipulate in parallel. Moreover, we show how small-scale plaquette
resonating valence bond states with s- and d-wave symmetry can be created and
characterized. We anticipate our findings to open the path towards the creation
and analysis of many-body RVB states in ultracold atomic gases.Comment: 7 page, 4 figures in main text, 3 figures in appendi
Fermionic Atoms in Optical Superlattices
Fermionic atoms in an optical superlattice can realize a very peculiar
Anderson lattice model in which impurities interact with each other through a
discretized set of delocalized levels. We investigate the interplay between
Kondo effect and magnetism under these finite-size features. We find that Kondo
effect can dominate over magnetism depending on the parity of the number of
particles per discretized set. We show how Kondo-induced resonances of
measurable size can be observed through the atomic interference pattern
Exploiting quantum parallelism to simulate quantum random many-body systems
We present an algorithm that exploits quantum parallelism to simulate randomness in a quantum system. In our scheme, all possible realizations of the random parameters are encoded quantum mechanically in a superposition state of an auxiliary system. We show how our algorithm allows for the efficient simulation of dynamics of quantum random spin chains with known numerical methods. We propose an experimental realization based on atoms in optical lattices in which disorder could be simulated in parallel and in a controlled way through the interaction with another atomic species
Influence of quenched dilution on the quasi-long-range ordered phase of the 2d XY model
The influence of non magnetic impurities in the 2d XY model is investigated
through Monte Carlo (MC) simulations. The general picture of the transition is
fully understood from the Harris criterion which predicts that the universality
class is unchanged, and the Berezinskii-Kosterlitz-Thouless description of the
topological transition remains valid. We nevertheless address here the question
about the influence of dilution on the quasi-long-range order at low
temperatures. In particular, we study the asymptotic of the pair correlation
function and report the MC estimates for the critical exponent at
different dilutions. In the weak dilution region, our MC calculations are
further supported by simple spin-wave-like calculations.Comment: 8 pages, 7 eps figure
Physical properties of the gamma-ray binary LS 5039 through low and high frequency radio observations
We have studied in detail the 0.15-15 GHz radio spectrum of the gamma-ray
binary LS 5039 to look for a possible turnover and absorption mechanisms at low
frequencies, and to constrain the physical properties of its emission. We have
analysed two archival VLA monitorings, all the available archival GMRT data and
a coordinated quasi-simultaneous observational campaign conducted in 2013 with
GMRT and WSRT. The data show that the radio emission of LS 5039 is persistent
on day, week and year timescales, with a variability at all
frequencies, and no signature of orbital modulation. The obtained spectra
reveal a power-law shape with a curvature below 5 GHz and a turnover at
GHz, which can be reproduced by a one-zone model with synchrotron
self-absorption plus Razin effect. We obtain a coherent picture for a size of
the emitting region of , setting a magnetic field of
, an electron density of and a mass-loss rate of . These values imply a significant mixing of the stellar wind with the
relativistic plasma outflow from the compact companion. At particular epochs
the Razin effect is negligible, implying changes in the injection and the
electron density or magnetic field. The Razin effect is reported for first time
in a gamma-ray binary, giving further support to the young non-accreting pulsar
scenario.Comment: 16 pages, 9 figures, accepted for publication in MNRA
Statistics of Core Lifetimes in Numerical Simulations of Turbulent, Magnetically Supercritical Molecular Clouds
We present measurements of the mean dense core lifetimes in numerical
simulations of magnetically supercritical, turbulent, isothermal molecular
clouds, in order to compare with observational determinations. "Prestellar"
lifetimes (given as a function of the mean density within the cores, which in
turn is determined by the density threshold n_thr used to define them) are
consistent with observationally reported values, ranging from a few to several
free-fall times. We also present estimates of the fraction of cores in the
"prestellar", "stellar'', and "failed" (those cores that redisperse back into
the environment) stages as a function of n_thr. The number ratios are measured
indirectly in the simulations due to their resolution limitations. Our approach
contains one free parameter, the lifetime of a protostellar object t_yso (Class
0 + Class I stages), which is outside the realm of the simulations. Assuming a
value t_yso = 0.46 Myr, we obtain number ratios of starless to stellar cores
ranging from 4-5 at n_thr = 1.5 x 10^4 cm^-3 to 1 at n_thr = 1.2 x 10^5 cm^-3,
again in good agreement with observational determinations. We also find that
the mass in the failed cores is comparable to that in stellar cores at n_thr =
1.5 x 10^4 cm^-3, but becomes negligible at n_thr = 1.2 x 10^5 cm^-3, in
agreement with recent observational suggestions that at the latter densities
the cores are in general gravitationally dominated. We conclude by noting that
the timescale for core contraction and collapse is virtually the same in the
subcritical, ambipolar diffusion-mediated model of star formation, in the model
of star formation in turbulent supercritical clouds, and in a model
intermediate between the previous two, for currently accepted values of the
clouds' magnetic criticality.Comment: 25 pages, 8 figures, ApJ accepted. Fig.1 animation is at
http://www.astrosmo.unam.mx/~e.vazquez/turbulence/movies/Galvan_etal07/Galvan_etal07.htm
Direct equivalence between quantum phase transition phenomena in radiation-matter and magnetic systems: scaling of entanglement
We show that the quantum phase transition arising in a standard
radiation-matter model (Dicke model) belongs to the same universality class as
the infinitely-coordinated, transverse field XY model. The effective
qubit-qubit exchange interaction is shown to be proportional to the square of
the qubit-radiation coupling. A universal finite-size scaling is derived for
the corresponding two-qubit entanglement (concurrence) and a size-consistent
effective Hamiltonian is proposed for the qubit subsystem.Comment: 4 pages, 3 figures. Minor changes. Published versio
Pfaffian-like ground state for 3-body-hard-core bosons in 1D lattices
We propose a Pfaffian-like Ansatz for the ground state of bosons subject to
3-body infinite repulsive interactions in a 1D lattice. Our Ansatz consists of
the symmetrization over all possible ways of distributing the particles in two
identical Tonks-Girardeau gases. We support the quality of our Ansatz with
numerical calculations and propose an experimental scheme based on mixtures of
bosonic atoms and molecules in 1D optical lattices in which this Pfaffian-like
state could be realized. Our findings may open the way for the creation of
non-abelian anyons in 1D systems
- âŠ