20 research outputs found

    Application of a high density ratio lattice-Boltzmann model for the droplet impingement on flat and spherical surfaces

    Get PDF
    In the current study, a 3-dimensional lattice Boltzmann model which can tolerate high density ratios is employed to simulate the impingement of a liquid droplet onto a flat and a spherical target. The four phases of droplet impact on a flat surface, namely, the kinematic, spreading, relaxation and equilibrium phase, have been obtained for a range of Weber and Reynolds numbers. The predicted maximum spread factor is in good agreement with experimental data published in the literature. For the impact of the liquid droplet onto a spherical target, the temporal variation of the film thickness on the target surface is investigated. The three different temporal phases of the film dynamics, namely, the initial drop deformation phase, the inertia dominated phase and the viscosity dominated phase are reproduced and studied. The effect of the droplet Reynolds number and the target-to-drop size ratio on the film flow dynamics is investigated

    A numerical model for the fractional condensation of pyrolysis vapours

    Get PDF
    Experimentation on the fast pyrolysis process has been primarily focused on the pyrolysis reactor itself, with less emphasis given to the liquid collection system (LCS). More importantly, the physics behind the vapour condensation process in LCSs has not been thoroughly researched mainly due to the complexity of the phenomena involved. The present work focusses on providing detailed information of the condensation process within the LCS, which consists of a water cooled indirect contact condenser. In an effort to understand the mass transfer phenomena within the LCS, a numerical simulation was performed using the Eulerian approach. A multiphase multi-component model, with the condensable vapours and non-condensable gases as the gaseous phase and the condensed bio-oil as the liquid phase, has been created. Species transport modelling has been used to capture the detailed physical phenomena of 11 major compounds present in the pyrolysis vapours. The development of the condensation model relies on the saturation pressures of the individual compounds based on the corresponding states correlations and assuming that the pyrolysis vapours form an ideal mixture. After the numerical analysis, results showed that different species condense at different times and at different rates. In this simulation, acidic components like acetic acid and formic acids were not condensed as it was also evident in experimental works, were the pH value of the condensed oil is higher than subsequent stages. In the future, the current computational model can provide significant aid in the design and optimization of different types of LCSs

    CFD modelling of particle shrinkage in a fluidized bed for biomass fast pyrolysis with quadrature method of moment

    Get PDF
    An Eulerian-Eulerian multi-phase CFD model was set up to simulate a lab-scale fluidized bed reactor for the fast pyrolysis of biomass. Biomass particles and the bed material (sand) were considered to be particulate phases and modelled using the kinetic theory of granular flow. A global, multi-stage chemical kinetic mechanism was integrated into the main framework of the CFD model and employed to account for the process of biomass devolatilization. A 3-parameter shrinkage model was used to describe the variation in particle size due to biomass decomposition. This particle shrinkage model was then used in combination with a quadrature method of moment (QMOM) to solve the particle population balance equation (PBE). The evolution of biomass particle size in the fluidized bed was obtained for several different patterns of particle shrinkage, which were represented by different values of shrinkage factors. In addition, pore formation inside the biomass particle was simulated for these shrinkage patterns, and thus, the density variation of biomass particles is taken into account

    A CFD approach on the effect of particle size on char entrainment in bubbling fluidised bed reactors

    No full text
    The fluid – particle interaction inside a 41.7 mg s?1 fluidised bed reactor is modelled. Three char particles of sizes 500 ?m, 250 ?m, and 100 ?m are injected into the fluidised bed and the momentum transport from the fluidising gas and fluidised sand is modelled. Due to the fluidising conditions and reactor design the char particles will either be entrained from the reactor or remain inside the bubbling bed. The particle size is the factor that differentiates the particle motion inside the reactor and their efficient entrainment out of it. A 3-Dimensional simulation has been performed with a completele revised momentum transport model for bubble three-phase flow according to the literature as an extension to the commercial finite volume code FLUENT 6.2.<br/

    CFD modelling of the fast pyrolysis of biomass in fluidised bed reactors: Modelling the impact of biomass shrinkage

    No full text
    The fluid–particle interaction and the impact of shrinkage on pyrolysis of biomass inside a 150 g/h fluidised bed reactor is modelled. Two 500 m in diameter biomass particles are injected into the fluidised bed with different shrinkage conditions. The two different conditions consist of (1) shrinkage equal to the volume left by the solid devolatilization, and (2) shrinkage parameters equal to approximately half of particle volume. The effect of shrinkage is analysed in terms of heat and momentum transfer as well as product yields, pyrolysis time and particle size considering spherical geometries. The Eulerian approach is used to model the bubbling behaviour of the sand, which is treated as a continuum. Heat transfer from the bubbling bed to the discrete biomass particle, as well as biomass reaction kinetics are modelled according to the literature. The particle motion inside the reactor is computed using drag laws, dependent on the local volume fraction of each phase. FLUENT 6.2 has been used as the modelling framework of the simulations with the whole pyrolysis model incorporated in the form of user defined function (UDF).<br/

    Micro-scale CFD study about the influence of operative parameters on physical mass transfer within structured packing elements

    No full text
    In this work a VOF-based 3D numerical model is developed to study the influence of several operative parameters on the gas absorption into falling liquid films. The parameters studied are liquid phase viscosity, gas phase pressure and inlet configuration, liquid-solid contact angle and plate texture. This study aims to optimize the post-combustion CO2 capture process within structured packed columns. Liquid phase viscosity is modified via MEA (i.e. monoethanolamine) concentration. The results show that an increase in liquid viscosity reduces the diffusivity of oxygen within the liquid film thus hindering the efficiency of the process. Higher pressure carries an absorption improvement that can be attractive to be applied in industry. The simulations show that enhanced oxygen absorption rates can be achieved depending on the velocity of the gas phase and the flow configuration (i.e. co- and counter-current). Also, the importance of wetting liquid-solid contact angles (i.e. less than 90°) is highlighted. Poor liquid-solid adhesion has similar effects as surface tension in terms of diminishing the spreading of the liquid phase over the metallic plate. Finally the influence of a certain geometrical pattern in the metallic surface is also assessed

    Numerical Modeling of a Short-Dwell Coater for Bio-Based Coating ApplicationsCoatings

    No full text
    Computational fluid dynamics (CFD) simulations were used for the evaluation of critical issues associated with coating processes with the aim of developing and optimizing this important industrial technology. Four different models, namely, the constant viscosity, shear thinning, Oldroyd-B viscoelastic, and Giesekus models, were analyzed and compared in a short-dwell coater (SDC) using a bio-based coating material. The simulation results showed that the primary vortex formations predicted by the viscoelastic models were highly dependent on the flow Deborah number, resulting in uneven stress distribution over the coated surface. For the viscoelastic models, the dominance of elastic forces over viscous forces gave rise to significant normal stress difference, primarily along the surface of the substrate paper. The shear-thinning phenomena predicted by the Giesekus model, however, tended to relax the stress development in contrast to the Oldroyd-B model. The observations indicate that a reduced coating velocity or modification of the coating material with a reduced relaxation time constant can significantly enhance the uniformity and thickness of the coating over the coated surface under controlled conditions

    Meso-scale CFD study of the dry pressure drop, liquid hold-up, interfacial area and mass transfer of structured packing materials

    No full text
    This work presents a meso-scale CFD methodology to describe the multiphase flow inside commercial structured packings for post-combustion CO2 capture. Meso-scale simulations of structured packings are often limited in the literature to dry pressure drop analyses whereas mass transfer characteristics and gas–liquid interface tracking are usually investigated at micro-scale. This work aims at testing further capabilities of meso-scale modeling by implementing the interface tracking instead of analyzing only the dry pressure drop performance with single-phase simulations. By doing so, it is possible to present also the hydrodynamics (i.e. liquid hold-up and interfacial area) for a small set of representative elementary units (REUs). The interest in interface tracking using commercial geometries lies on the fact that liquid hold-up and interfacial area have implications of capital importance on the overall performance of the absorber, hence the importance of developing a model to predict them accurately. The results show how the relationship, reported in the literature, between the liquid load and both the liquid hold-up and the interfacial area is reproduced by the present CFD methodology. Also, a more realistic visualization is accomplished with images of the inner irregularities of the flow (i.e. liquid maldistribution, formation of droplets and rivulets, etc.), which lie far from the prevailing assumption of the formation of a perfectly developed liquid film over the packing. Moreover, the effect of operating parameters such as the liquid load, liquid viscosity and liquid–solid contact angle on the amount of interfacial area available for mass transfer is also discussed. Finally, mass source terms are also included to describe the gas absorption into the liquid phase hence testing all the capabilities of micro-scale modeling at meso-scale. The present model could be further used for the analysis and optimization of other structured packing geometries

    Meso-scale CFD study of the dry pressure drop, liquid hold-up, interfacial area and mass transfer of structured packing materials

    No full text
    This work presents a meso-scale CFD methodology to describe the multiphase flow inside commercial structured packings for post-combustion CO2 capture. Meso-scale simulations of structured packings are often limited in the literature to dry pressure drop analyses whereas mass transfer characteristics and gas–liquid interface tracking are usually investigated at micro-scale. This work aims at testing further capabilities of meso-scale modeling by implementing the interface tracking instead of analyzing only the dry pressure drop performance with single-phase simulations. By doing so, it is possible to present also the hydrodynamics (i.e. liquid hold-up and interfacial area) for a small set of representative elementary units (REUs). The interest in interface tracking using commercial geometries lies on the fact that liquid hold-up and interfacial area have implications of capital importance on the overall performance of the absorber, hence the importance of developing a model to predict them accurately. The results show how the relationship, reported in the literature, between the liquid load and both the liquid hold-up and the interfacial area is reproduced by the present CFD methodology. Also, a more realistic visualization is accomplished with images of the inner irregularities of the flow (i.e. liquid maldistribution, formation of droplets and rivulets, etc.), which lie far from the prevailing assumption of the formation of a perfectly developed liquid film over the packing. Moreover, the effect of operating parameters such as the liquid load, liquid viscosity and liquid–solid contact angle on the amount of interfacial area available for mass transfer is also discussed. Finally, mass source terms are also included to describe the gas absorption into the liquid phase hence testing all the capabilities of micro-scale modeling at meso-scale. The present model could be further used for the analysis and optimization of other structured packing geometries
    corecore