204 research outputs found

    Neutron tomography methods applied to a nickel-based superalloy additive manufacture build

    Get PDF
    Selective-laser melting (SLM) is one of the most rapidly developing and promising of all the so-called “Additive Manufacture” routes due to its capability to produce component geometries that would prove impossible using traditional manufacture. A selective-laser melting fabricated cuboid component was built using powder CM247LC, using standard methods, and this was subsequently analysed using neutron tomography methodology to allow for three-dimensional visualisation of the exterior and the interior of the component. The resulting neutron radiographs were processed and analysed for evidence of both porosity and grain boundary segregation within the component

    In-situ neutron diffraction during stress relaxation of a single crystal nickel-base superalloy

    Get PDF
    The stress relaxation behaviour of a single crystal nickel-base superalloy has been quantified using time-of-flight neutron diffraction analysis for a range of temperatures relevant to casting. A new iterative analysis methodology is described to isolate the lattice strain behaviour of the γ matrix and γ' precipitate phases from data obtained sufficiently rapidly to help elucidate the microscopic effect of macroscopic stress relaxation. The independent response of γ and γ' is revealed, showing the temperature sensitivity of lattice strain relaxation. The γ/γ' response is discussed in the context of thermo-mechanical conditions that may affect the propensity for recrystallisation

    On the role of melt flow into the surface structure and porosity development during selective laser melting

    Get PDF
    In this study, the development of surface structure and porosity of Ti–6Al–4V samples fabricated by selective laser melting under different laser scanning speeds and powder layer thicknesses has been studied and correlated with the melt flow behaviour through both experimental and modelling approaches. The as-fabricated samples were investigated using optical microscopy (OM) and scanning electron microscopy (SEM). The interaction between laser beam and powder particles was studied by both high speed imaging observation and computational fluid dynamics (CFD) calculation. It was found that at a high laser power and a fixed powder layer thickness (20 μm), the samples contain particularly low porosity when the laser scanning speeds are below 2700 mm/s. Further increase of scanning speed led to increase of porosity but not significantly. The porosity is even more sensitive to powder layer thickness with the use of thick powder layers (above 40 μm) leading to significant porosity. The increase of porosity with laser scanning speed and powder layer thickness is not inconsistent with the observed increase in surface roughness complicated by increasingly irregular-shaped laser scanned tracks and an increased number of discontinuity and cave-like pores on the top surfaces. The formation of pores and development of rough surfaces were found by both high speed imaging and modelling, to be strongly associated with unstable melt flow and splashing of molten material

    History dependence of the microstructure on time-dependent deformation during <i>in-situ</i> cooling of a nickel-based single crystal superalloy

    Get PDF
    Time-dependent plastic deformation through stress relaxation and creep deformation during in-situ cooling of the as-cast single-crystal superalloy CMSX-4®has been studied via neutron diffraction, transmission electron microscopy, electro-thermal miniature testing, and analytical modeling across two temperature regimes. Between 1000 °C and 900 °C, stress relaxation prevails and gives rise to softening as evidenced by a decreased dislocation density and the presence of long segment stacking faults in γ phase. Lattice strains decrease in both the γ matrix and γ′ precipitate phases. A constitutive viscoplastic law derived from in-situ isothermal relaxation test under-estimates the equivalent plastic strain in the prediction of the stress and strain evolution during cooling in this case. It is thereby shown that the history dependence of the microstructure needs to be taken into account while deriving a constitutive law and which becomes even more relevant at high temperatures approaching the solvus. Higher temperature cooling experiments have also been carried out between 1300 °C and 1150 °C to measure the evolution of stress and plastic strain close to the γ′ solvus temperature. In-situ cooling of samples using ETMT shows that creep dominates during high-temperature deformation between 1300 °C and 1220 °C, but below a threshold temperature, typically 1220 °C work hardening begins to prevail from increasing γ′ fraction and resulting in a rapid increase in stress. The history dependence of prior accumulated deformation is also confirmed in the flow stress measurements using a single sample while cooling. The saturation stresses in the flow stress experiments show very good agreement with the stresses measured in the cooling experiments when viscoplastic deformation is dominant. This study demonstrates that experimentation during high-temperature deformation as well as the history dependence of the microstructure during cooling plays a key role in deriving an accurate viscoplastic constitutive law for the thermo-mechanical process during cooling from solidification

    Nucleation of recrystallisation in castings of single crystal Ni-based superalloys

    Get PDF
    Recrystallisation in single crystal Ni-based superalloys during solution heat treatment results in a significant cost to the investment casting industry. In this paper two sources of surface nucleation have been identified in the alloy CMSX-4. Firstly, Electron Backscattered Diffraction (EBSD) has revealed micro-grains of γ', between 2 and 30 μm diameter in the layer of surface eutectic found in the upper part of the casting. These have high angle boundaries with respect to the bulk single crystal and a fraction coarsen during solution heat treatment. Secondly, in the lower regions where surface eutectic does not form, locally deformed regions, 5–20 μm deep, form where the metal adheres to the mould. The local strain causes misorientations up to ≈20° with respect the bulk single crystal, and after heat treatment these regions develop into small grains of similar low-angle misorientations. However, they also form twins to produce further grains which have mobile high-angle boundaries with respect to the bulk single crystal. Experiments have shown that micro-grains at the surface grow to cause full recrystallisation where there is sufficient strain in the bulk material, and by removing these surface defects, recrystallisation can be completely mitigated. Etching of the cast surface is demonstrated to be an effective method of achieving this.Engineering and Physical Sciences Research Council and Rolls-Royce plc for financial support from Dorothy Hodgkin Postgraduate Awards and the EPRSC-Rolls-Royce Strategic Partnership Grant EP/H500375/

    Laser-based Additive Manufacturing of Bulk Metallic Glasses: Recent Advances and Future Perspectives for Biomedical Applications

    Get PDF
    Bulk metallic glasses (BMGs) are non-crystalline class of advanced materials and have found potential applications in the biomedical field. Although there are numerous conventional manufacturing approaches for processing BMGs, the most commonly used like copper-mould casting have some limitations. It is not easy to manage and control the critical cooling rate, especially when the fabrication of complex BMG geometries is involved. Other limitations of these techniques include the size constraints, non-flexibility, and the tooling and accessories are costly. The emergence of additive manufacturing (AM) has opened another promising manufacturing route for processing BMGs. AM processes, particularly laser powder-bed fusion (PBF-LB/M) builds parts layer-by-layer and successively fused the powder-melted feedstocks using prescribed computer-controlled laser scanner system, thereby forming a BMGs part upon sufficiently rapid cooling to ensure the glass forming-ability. PBF-LB/M overcomes the limitations of the pre-existing BMGs processing techniques by not only improving the part size, but also produces exceptionally complex structures and patient-specific implants. This review article aims to summarise and discuss the mechanism of BMGs formation through PBF-LB/M for biomedical applications and to highlight the current scientific and technological challenges as well as the future research perspectives towards overcoming the pore-mediated microcracks, partial crystallisation, brittleness and BMG size constraint
    corecore