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Abstract 

Selective-laser melting (SLM) is one of the most rapidly developing and promising of all the so-called 

“Additive Manufacture” routes due to its capability to produce component geometries that would prove 

impossible using traditional manufacture. A selective-laser melting fabricated cuboid component was built 

using powder CM247LC, using standard methods, and this was subsequently analysed using neutron 

tomography methodology to allow for three-dimensional visualisation of the exterior and the interior of 

the component. The resulting neutron radiographs were processed and analysed for evidence of both 

porosity and grain boundary segregation within the component.  

Keywords: Selective-laser-melting, Attenuation, Porosity, Grain-boundary segregation, CM247LC 

 

1. Introduction 

Selective layer melting (SLM) is one of the rapidly increasing manufacturing routes [1] that make up the 

so-called ‘Additive Manufacture’ family of manufacturing processes. The manufacture of structural 

components from Nickel-based superalloys using these developing additive techniques is increasing in 

popularity as industries such as aerospace and aero-engine sectors are investing in additive manufacture 

research. As with many powder processing routes, selective laser melting (SLM) can produce highly 

complex components with an internal structural build that would be impossible to produce using any 

traditional manufacturing route [2].  SLM offers one of the most precise additive manufacture processes, 

largely due to its small laser source diameter (approximately 250 µm) and its very small deposition layer 

thickness (typically 30-50 µm), which therefore offers a much improved surface finish compared to other 

additive processes [3]. However this does of course come at the expense of slower deposition rates and 

thus slower build times. 

The ease with which a nickel-based superalloy can be successfully fabricated using SLM largely depends 

upon the composition of the alloy. Whilst some superalloys are relatively easy to form using SLM, these 

tend to be alloys with a low volume fraction of γ’ precipitates [4]. However, the improved creep-life that 

can be achieved by nickel-based superalloys with a higher volume fraction of γ’ precipitate has led to 

these alloys being preferred for safety-critical components. This work considers SLM fabrication of high 

content γ’ alloys, and demonstrates the use of neutron tomography methods to investigate porosity 

during the solidification stage and the resultant localised chemical composition within the builds. 

 

2. Material and methods 

2.1 SLM fabrication 
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CM247LC is an example of a larger volume fraction γ’ precipitate-forming superalloys which can give 

improved creep resistance, strength and thus improved in-service life. CM247LC is a Cannon-Muskegon 

developed variant of the nickel-based superalloy Mar M 247 developed by Martin Marietta Corporation 

[5]. An SLM-built CM247LC 15mm x 15mm x 30 mm tower was fabricated. The build was then sectioned 

using EDM wire erosion to cut narrower 7.5 mm x 7.5 mm x 30 mm sub-towers (as shown in Figure 1), to 

allow sufficient transmission of neutrons through the sample and hence produce a reasonable image. 

Two opposing corner sub-builds were examined using neutron tomography. 

 

2.2 Neutron Tomography 

 Neutron tomography is a non-destructive, non-invasive method allowing through-thickness resolution of 

a sample [6]. The difference in attenuation coefficient of different elements for a cold neutron beam 

produces variation/contrast in the measured/recorded radiographs on the CCD detector placed in 

transmission geometry. Neutron tomography methods can reveal the sub-surface structure of a 

component. Thus, the approach is highly applicable to determine the presence and distribution of sub-

surface porosity within the SLM-built structure [7]. The attenuation of a neutron beam for a uniform 

sample thickness and homogeneous material of a single isotope is given by:  

                                               𝐼(𝜆) = 𝐼0(𝜆)𝑒
−𝜇(𝜆)Δ𝑥    Equation 1 

For I and I0 the transmitted and incident beam intensity, 𝜇 the attenuation coefficient, 𝜆 the neutron 

wavelength and Δ𝑥 the sample thickness [6]. The attenuation coefficient can be calculated using: 

                                                  𝜇(𝜆) = 𝜎𝑡(𝜆)
𝜌𝑁𝐴

𝑀𝑚𝑜𝑙𝑎𝑟
    Equation 2 

where 𝜎𝑡 is sample cross-sectional area, 𝜌 the density, 𝑁𝐴 is Avogadro’s constant and 𝑀𝑚𝑜𝑙𝑎𝑟 is molar 

mass. Note that neutron attenuation is dependent upon the wavelength of the neutron source [6].  

For the experimental set-up, the CG-1D imaging beamline at Oak Ridge National Laboratory, within the 

High Flux Isotope Reactor (HFIR) facility was used. This tomography system has a line of flight from 

neutron beam aperture to detector of L=6.59m. The aperture was set to D=4.1mm, thus producing an L/D 

ratio of ~1600:1. A rotation stage is positioned in between aperture and detector to mount and rotate 

the sample through 360° and a CCD detector unit [6,8] positioned behind the sample. The cold neutron 

wavelength ranged from 0.8 to 6 Å, with a peak neutron intensity at 2.6Å (2.6x10-10m), and based upon 

the chemical composition of the CM247LC superalloy (see Table 1), the material density and the sample 

thickness, the transmitted beam was predicted to have an intensity of ~0.135𝐼0-0.225𝐼0, depending upon 

the rotational position of the cuboid sample (the lower transmission corresponding to the beam travelling 

across a leading diagonal of the cuboid). The sample was rotated at increments of 0.91° to produce 395 

images taken through the full 360° rotation of the sample.  

An open-beam image (with no sample in the path of the aperture to detector) must be performed prior 

to the experimental set-up, in order to account for any beam inhomogeneities. Finally, all neutron 

tomography radiographs taken by the CCD detector are corrected for dark-field which allows the 

produced image to correct for electronic noise generated by the CCD detector. The tomography data was 

reconstructed using a software package called OCTOPUS [9]. 

 

3. Results & discussion 
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3.1 Porosity visualisation 

The resulting 3D reconstructed data was visualised and analysed using the Avizo software [10] to study 

sub-surface porosity. The resulting porosity within two opposing corners A and B of the same SLM build 

revealed significant variations in porosity measurements – see Figure 2. 

As is typical of powder processing manufacture, the consolidation of powder particles to form the 

structural component is of critical importance. Microscale void defects (micro-voids) can form within an 

SLM formed component at various locations due to one of three principal mechanisms: (a) where the 

metallic powder has not been heated enough to produce melting of the particle to allow a bonding to the 

adjacent layer, or alternatively (b) the particle has been heated to above the alloy liquidus temperature 

but due to the speed of the laser heat source, the time in the molten phase is so brief that the viscous 

molten particle does not have enough time to “drip” down to fill the voids present across the layer of 

powder particles due to spherical packing. Finally, (c) a melt-induced porous void can form within the fully 

molten region of the build due to induced fluid flow or due to superheated material exceeding the 

vaporisation temperature, which leads to gas bubble formation inside the molten material. Upon 

solidification, these gas bubbles become trapped.  

The so-called lack of fusion pores are of a similar size to the particle diameter, thus would be expected to 

vary in the range of 15-40 μm. These are of the relevant size to be observed by the typical resolution of 

neutron tomography methods. The latter melt-induced pores are typically of the order of 1 µm in 

diameter, and are difficult to observe experimentally using neutrons, and consequently are not 

considered further in this work. 

The significant location-specific variation in the lack-of-fusion porosity measured using this neutron 

tomography technique when comparing region A and region B of the same SLM sample would strongly 

suggest an impact upon the property distribution within the component and subsequent in-service 

performance. In addition including the levels of any manufacture-route induced residual stresses are 

likely to be modified by the heterogeneous porosity distribution.  

 

3.2 Grain-boundary segregation visualisation 

The neutron radiographs were analysed using Azivo software to assess the attenuation of the neutron 

beam across grains within the build. Figure 2 shows a network of lighter regions indicating lower 

attenuation and thus a variation in chemical composition close to the grain boundaries. The SLM-built 

components thus required advanced characterisation methods to determine the chemistry within the 

grain and within the layered segregation phase close to the grain boundary.  

Energy-dispersive spectroscopy (EDX) methods were employed using the Jeol JSM-7000F SEM equipped 

with an Oxford instruments Inca 300 EDX system. A region of the build close to the base of the 

component was analysed. A line-scan was performed across the length of a grain including the grain 

boundary regions (see Figure 3). Chemical analysis of the grain and boundary regions have been 

calculated from the resulting EDX analysis, and the composition of the scanned domain is given in Table 1. 

The layered bulk phase close to the grain boundary was approximately 0.5-1 μm in thickness, whereas 

typically grain boundary complexions measure only a few nm in thickness, thus requiring atom probe 

techniques to determine [11,12].  
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The measured chemical composition of this layered phase close to grain boundaries shows increased 

hafnium and tantalum content, and depleted cobalt and nickel content. Hafnium in particular has been 

reported to segregate toward the grain boundary within Ni-base superalloys [4,13], thus it is not 

surprising to find it in higher concentration within this layered bulk phase. A layered bulk phase 

coincident to the grain boundary has been reported within the literature before [14]. The authors 

concluded that the presence of the layered phase was connected with complete / incomplete wetting of 

the grain boundaries, and the associated higher entropy of the liquid compared to solid phase effectively 

provided a mechanism for a phase transformation. This has been observed for both the Al-Zn [14] and 

Cu-Co [15] systems.  

 

4. Conclusions 

A neutron tomography experiment was conducted upon an SLM-fabricated simple cuboid component, to 

illustrate the applicability of this technique to non-destructively analyse SLM components. The following 

conclusions are drawn. 

 The measured porosity significantly varied within the two different locations across the width of 

the SLM component. This porosity variation could potentially have important effects upon 

location-specific properties and component design.  

• A layered bulk phase close to the grain boundaries, hypothesised to be caused by wetting effects, 

was detected within the SLM-built component. The second phase forms in layers of 

approximately 0.5-1 μm thickness as determined by EDX analysis. 
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Figures and Tables 

 

Figure 1: Neutron tomography highlights significant variation in porosity measured in columns A and B cut from the 

same SLM-fabricated sample 
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Figure 2: Avizo analysis of the SLM-fabricated neutron tomography data for sub-builds A and B, highlighting a 

potential grain boundary segregation effect shown as a network of lighter regions around grains. 
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Figure 3: EDX line-scan analysis of a region of the SLM build across a grain and grain boundary. 

 

 

Table 1: EDX chemical composition of the CM247LC ALM build in the matrix and in the segregated material (at%) 

 Cr Co Mo W Ta Ti Al Hf Zr Ni 

Segregation 1.90 1.74 - 0.68 6.23 0.48 15.88 63.90 - 9.24 

Grain 10.29 9.72 0.5 4.68 0.64 0.87 14.35 0.48 0.05 58.43 
 


