546 research outputs found

    Conditions of the Martian atmosphere and surface in the remote past and their relevance to the question of life on Mars

    Get PDF
    Although the Viking Landers failed to find any evidence of life on the surface of Mars, much remains unknown. Study of returned samples can answer some of these questions. The search for organic compounds, the building blocks of life forms based on carbon chemistry, should continue. The question of life on Mars is still an open one, and deserves to be addressed by the study of returned samples. Whether life developed and evolved on Mars or not depends critically on the history of the Martian atmosphere and hydrosphere. The exobiology of Mars is thus inextrically intertwined with the nature of its paleoatmosphere and the ancient state of the planet's regolith, which may still be preserved in the polar caps and underground. Core samples from such sites could answer some of the questions

    Assessing the use of social media for employee engagement in the Singapore military

    Get PDF

    Lim homeobox genes in the Ctenophore Mnemiopsis leidyi: the evolution of neural cell type specification

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nervous systems are thought to be important to the evolutionary success and diversification of metazoans, yet little is known about the origin of simple nervous systems at the base of the animal tree. Recent data suggest that ctenophores, a group of macroscopic pelagic marine invertebrates, are the most ancient group of animals that possess a definitive nervous system consisting of a distributed nerve net and an apical statocyst. This study reports on details of the evolution of the neural cell type specifying transcription factor family of LIM homeobox containing genes (Lhx), which have highly conserved functions in neural specification in bilaterian animals.</p> <p>Results</p> <p>Using next generation sequencing, the first draft of the genome of the ctenophore <it>Mnemiopsis leidyi </it>has been generated. The Lhx genes in all animals are represented by seven subfamilies (<it>Lhx1/5, Lhx3/4, Lmx, Islet, Lhx2/9, Lhx6/8</it>, and <it>LMO</it>) of which four were found to be represented in the ctenophore lineage (<it>Lhx1/5, Lhx3/4, Lmx</it>, and <it>Islet</it>). Interestingly, the ctenophore Lhx gene complement is more similar to the sponge complement (sponges do not possess neurons) than to either the cnidarian-bilaterian or placozoan Lhx complements. Using whole mount <it>in situ </it>hybridization, the Lhx gene expression patterns were examined and found to be expressed around the blastopore and in cells that give rise to the apical organ and putative neural sensory cells.</p> <p>Conclusion</p> <p>This research gives us a first look at neural cell type specification in the ctenophore <it>M. leidyi</it>. Within <it>M. leidyi</it>, Lhx genes are expressed in overlapping domains within proposed neural cellular and sensory cell territories. These data suggest that Lhx genes likely played a conserved role in the patterning of sensory cells in the ancestor of sponges and ctenophores, and may provide a link to the expression of Lhx orthologs in sponge larval photoreceptive cells. Lhx genes were later co-opted into patterning more diversified complements of neural and non-neural cell types in later evolving animals.</p
    • …
    corecore