146 research outputs found

    Resting-state hippocampal connectivity correlates with symptom severity in post-traumatic stress disorder

    Get PDF
    AbstractPost-traumatic stress disorder (PTSD) is a serious mental health injury which can manifest after experiencing a traumatic life event. The disorder is characterized by symptoms of re-experiencing, avoidance, emotional numbing and hyper-arousal. Whilst its aetiology and resultant symptomology are better understood, relatively little is known about the underlying cortical pathophysiology, and in particular whether changes in functional connectivity may be linked to the disorder. Here, we used non-invasive neuroimaging with magnetoencephalography to examine functional connectivity in a resting-state protocol in the combat-related PTSD group (n = 23), and a military control group (n = 21). We identify atypical long-range hyperconnectivity in the high-gamma-band resting-state networks in a combat-related PTSD population compared to soldiers who underwent comparable environmental exposure but did not develop PTSD. Using graph analysis, we demonstrate that apparent network connectivity of relevant brain regions is associated with cognitive-behavioural outcomes. We also show that left hippocampal connectivity in the PTSD group correlates with scores on the well-established PTSD Checklist (PCL). These findings indicate that atypical synchronous neural interactions may underlie the psychological symptoms of PTSD, whilst also having utility as a potential biomarker to aid in the diagnosis and monitoring of the disorder

    Low-frequency connectivity is associated with mild traumatic brain injury

    Get PDF
    AbstractMild traumatic brain injury (mTBI) occurs from a closed-head impact. Often referred to as concussion, about 20% of cases complain of secondary psychological sequelae, such as disorders of attention and memory. Known as post-concussive symptoms (PCS), these problems can severely disrupt the patient's quality of life. Changes in local spectral power, particularly low-frequency amplitude increases and/or peak alpha slowing have been reported in mTBI, but large-scale connectivity metrics based on inter-regional amplitude correlations relevant for integration and segregation in functional brain networks, and their association with disorders in cognition and behaviour, remain relatively unexplored. Here, we used non-invasive neuroimaging with magnetoencephalography to examine functional connectivity in a resting-state protocol in a group with mTBI (n = 20), and a control group (n = 21). We observed a trend for atypical slow-wave power changes in subcortical, temporal and parietal regions in mTBI, as well as significant long-range increases in amplitude envelope correlations among deep-source, temporal, and frontal regions in the delta, theta, and alpha bands. Subsequently, we conducted an exploratory analysis of patterns of connectivity most associated with variability in secondary symptoms of mTBI, including inattention, anxiety, and depression. Differential patterns of altered resting state neurophysiological network connectivity were found across frequency bands. This indicated that multiple network and frequency specific alterations in large scale brain connectivity may contribute to overlapping cognitive sequelae in mTBI. In conclusion, we show that local spectral power content can be supplemented with measures of correlations in amplitude to define general networks that are atypical in mTBI, and suggest that certain cognitive difficulties are mediated by disturbances in a variety of alterations in network interactions which are differentially expressed across canonical neurophysiological frequency ranges

    Compton scattering beyond the impulse approximation

    Full text link
    We treat the non-relativistic Compton scattering process in which an incoming photon scatters from an N-electron many-body state to yield an outgoing photon and a recoil electron, without invoking the commonly used frameworks of either the impulse approximation (IA) or the independent particle model (IPM). An expression for the associated triple differential scattering cross section is obtained in terms of Dyson orbitals, which give the overlap amplitudes between the N-electron initial state and the (N-1) electron singly ionized quantum states of the target. We show how in the high energy transfer regime, one can recover from our general formalism the standard IA based formula for the cross section which involves the ground state electron momentum density (EMD) of the initial state. Our formalism will permit the analysis and interpretation of electronic transitions in correlated electron systems via inelastic x-ray scattering (IXS) spectroscopy beyond the constraints of the IA and the IPM.Comment: 7 pages, 1 figur

    Termination of STING responses is mediated via ESCRT-dependent degradation

    Get PDF
    Published online 4 May 2023cGAS-STING signalling is induced by detection of foreign or mislocalised host double-stranded (ds)DNA within the cytosol. STING acts as the major signalling hub, where it controls production of type I interferons and inflammatory cytokines. Basally, STING resides on the ER membrane. Following activation STING traffics to the Golgi to initiate downstream signalling and subsequently to endolysosomal compartments for degradation and termination of signalling. While STING is known to be degraded within lysosomes, the mechanisms controlling its delivery remain poorly defined. Here we utilised a proteomics-based approach to assess phosphorylation changes in primary murine macrophages following STING activation. This identified numerous phosphorylation events in proteins involved in intracellular and vesicular transport. We utilised high-temporal microscopy to track STING vesicular transport in live macrophages. We subsequently identified that the endosomal complexes required for transport (ESCRT) pathway detects ubiquitinated STING on vesicles, which facilitates the degradation of STING in murine macrophages. Disruption of ESCRT functionality greatly enhanced STING signalling and cytokine production, thus characterising a mechanism controlling effective termination of STING signalling.Katherine R Balka, Rajan Venkatraman, Tahnee L Saunders, Angus Shoppee, Ee Shan Pang, Zoe Magill, Jihane Homman-Ludiye, Cheng Huang, Rachael M Lane, Harrison M York, Peck Tan, Ralf B Schittenhelm, Senthil Arumugam, Benjamin T Kile, Meredith O, Keeffe, Dominic De Nard

    Discordance in STING-Induced Activation and Cell Death Between Mouse and Human Dendritic Cell Populations

    Get PDF
    Stimulator of Interferon Genes (STING) is a cytosolic sensor of cyclic dinucleotides (CDNs). The activation of dendritic cells (DC) via the STING pathway, and their subsequent production of type I interferon (IFN) is considered central to eradicating tumours in mouse models. However, this contribution of STING in preclinical murine studies has not translated into positive outcomes of STING agonists in phase I & II clinical trials. We therefore questioned whether a difference in human DC responses could be critical to the lack of STING agonist efficacy in human settings. This study sought to directly compare mouse and human plasmacytoid DCs and conventional DC subset responses upon STING activation. We found all mouse and human DC subsets were potently activated by STING stimulation. As expected, Type I IFNs were produced by both mouse and human plasmacytoid DCs. However, mouse and human plasmacytoid and conventional DCs all produced type III IFNs (i.e., IFN-ls) in response to STING activation. Of particular interest, all human DCs produced large amounts of IFN-l1, not expressed in the mouse genome. Furthermore, we also found differential cell death responses upon STING activation, observing rapid ablation of mouse, but not human, plasmacytoid DCs. STING-induced cell death in murine plasmacytoid DCs occurred in a cell-intrinsic manner and involved intrinsic apoptosis. These data highlight discordance between STING IFN and cell death responses in mouse and human DCs and caution against extrapolating STING-mediated events in mouse models to equivalent human outcomes.Ee Shan Pang, Ghazal Daraj, Katherine R. Balka, Dominic De Nardo, Christophe Macri, Hubertus Hochrein, Kelly-Anne Masterman, Peck S. Tan, Angus Shoppee, Zoe Magill, Nazneen Jahan, Mariam Bafit, Yifan Zhan, Benjamin T. Kile, Kate E. Lawlor, Kristen J. Radford, Mark D. Wright, and Meredith O, Keeff

    Search for heavy resonances decaying into a Z or W boson and a Higgs boson in final states with leptons and b-jets in 139 fb−1 of pp collisions at s√ = 13 TeV with the ATLAS detector

    Get PDF
    This article presents a search for new resonances decaying into a Z or W boson and a 125 GeV Higgs boson h, and it targets the νν¯¯¯bb¯¯, ℓ+ℓ−bb¯¯, or ℓ±νbb¯¯ final states, where ℓ = e or μ, in proton-proton collisions at s√ = 13 TeV. The data used correspond to a total integrated luminosity of 139 fb−1 collected by the ATLAS detector during Run 2 of the LHC at CERN. The search is conducted by examining the reconstructed invariant or transverse mass distributions of Zh or Wh candidates for evidence of a localised excess in the mass range from 220 GeV to 5 TeV. No significant excess is observed and 95% confidence-level upper limits between 1.3 pb and 0.3 fb are placed on the production cross section times branching fraction of neutral and charged spin-1 resonances and CP-odd scalar bosons. These limits are converted into constraints on the parameter space of the Heavy Vector Triplet model and the two-Higgs-doublet model

    The ATLAS trigger system for LHC Run 3 and trigger performance in 2022

    Get PDF
    The ATLAS trigger system is a crucial component of the ATLAS experiment at the LHC. It is responsible for selecting events in line with the ATLAS physics programme. This paper presents an overview of the changes to the trigger and data acquisition system during the second long shutdown of the LHC, and shows the performance of the trigger system and its components in the proton-proton collisions during the 2022 commissioning period as well as its expected performance in proton-proton and heavy-ion collisions for the remainder of the third LHC data-taking period (2022–2025)

    Observation of quantum entanglement with top quarks at the ATLAS detector

    Get PDF
    Entanglement is a key feature of quantum mechanics with applications in fields such as metrology, cryptography, quantum information and quantum computation. It has been observed in a wide variety of systems and length scales, ranging from the microscopic to the macroscopic. However, entanglement remains largely unexplored at the highest accessible energy scales. Here we report the highest-energy observation of entanglement, in top–antitop quark events produced at the Large Hadron Collider, using a proton–proton collision dataset with a centre-of-mass energy of √s = 13 TeV and an integrated luminosity of 140 inverse femtobarns (fb)−1 recorded with the ATLAS experiment. Spin entanglement is detected from the measurement of a single observable D, inferred from the angle between the charged leptons in their parent top- and antitop-quark rest frames. The observable is measured in a narrow interval around the top–antitop quark production threshold, at which the entanglement detection is expected to be significant. It is reported in a fiducial phase space defined with stable particles to minimize the uncertainties that stem from the limitations of the Monte Carlo event generators and the parton shower model in modelling top-quark pair production. The entanglement marker is measured to be D = −0.537 ± 0.002 (stat.) ± 0.019 (syst.) for 340 GeV < mtt < 380 GeV. The observed result is more than five standard deviations from a scenario without entanglement and hence constitutes the first observation of entanglement in a pair of quarks and the highest-energy observation of entanglement so far

    Search for the Zγ decay mode of new high-mass resonances in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This letter presents a search for narrow, high-mass resonances in the Zγ final state with the Z boson decaying into a pair of electrons or muons. The √s = 13 TeV pp collision data were recorded by the ATLAS detector at the CERN Large Hadron Collider and have an integrated luminosity of 140 fb−1. The data are found to be in agreement with the Standard Model background expectation. Upper limits are set on the resonance production cross section times the decay branching ratio into Zγ. For spin-0 resonances produced via gluon–gluon fusion, the observed limits at 95% confidence level vary between 65.5 fb and 0.6 fb, while for spin-2 resonances produced via gluon–gluon fusion (or quark–antiquark initial states) limits vary between 77.4 (76.1) fb and 0.6 (0.5) fb, for the mass range from 220 GeV to 3400 GeV
    corecore