35,365 research outputs found
Exact isovector pairing in a shell-model framework: Role of proton-neutron correlations in isobaric analog states
We utilize a nuclear shell model Hamiltonian with only two adjustable
parameters to generate, for the first time, exact solutions for pairing
correlations for light to medium-mass nuclei, including the challenging
proton-neutron pairs, while also identifying the primary physics involved. In
addition to single-particle energy and Coulomb potential terms, the shell model
Hamiltonian consists of an isovector pairing interaction and an average
proton-neutron isoscalar interaction, where the term describes the
average interaction between non-paired protons and neutrons. This Hamiltonian
is exactly solvable, where, utilizing 3 to 7 single-particle energy levels, we
reproduce experimental data for 0 state energies for isotopes with mass
through exceptionally well including isotopes from He to Ge.
Additionally, we isolate effects due to like-particle and proton-neutron
pairing, provide estimates for the total and proton-neutron pairing gaps, and
reproduce (neutron) = (proton) irregularity. These results provide a
further understanding for the key role of proton-neutron pairing correlations
in nuclei, which is especially important for waiting-point nuclei on the
rp-path of nucleosynthesis.Comment: 10 pages, 4 figure
The viscosity radius in dilute polymer solutions: Universal behaviour from DNA rheology and Brownian dynamics simulations
The swelling of the viscosity radius, , and the universal
viscosity ratio, , have been determined experimentally for linear
DNA molecules in dilute solutions with excess salt, and numerically by Brownian
dynamics simulations, as a function of the solvent quality. In the latter
instance, asymptotic parameter free predictions have been obtained by
extrapolating simulation data for finite chains to the long chain limit.
Experiments and simulations show a universal crossover for and
from to good solvents in line with earlier observations
on synthetic polymer-solvent systems. The significant difference between the
swelling of the dynamic viscosity radius from the observed swelling of the
static radius of gyration, is shown to arise from the presence of hydrodynamic
interactions in the non-draining limit. Simulated values of and
are in good agreement with experimental measurements in synthetic
polymer solutions reported previously, and with the measurements in linear DNA
solutions reported here.Comment: 19 pages, 14 figures, two column, Supporting Information added, to
appear in Macromolecule
Coherent resonant tunneling in ac fields
We have analyzed the tunneling transmission probability and electronic
current density through resonant heterostructures in the presence of an
external electromagnetic field. In this work, we compare two different models
for a double barrier : In the first case the effect of the external field is
taken into account by spatially dependent AC voltages and in the second one the
electromagnetic field is described in terms of a photon field that irradiates
homogeneously the whole sample. While in the first description the tunneling
takes place mainly through photo sidebands in the case of homogeneous
illumination the main effective tunneling channels correspond to the coupling
between different electronic states due to photon absorption and emission. The
difference of tunneling mechanisms between these configurations is strongly
reflected in the transmission and current density which present very different
features in both cases. In order to analyze these effects we have obtained,
within the Transfer Hamiltonian framework, a general expression for the
transition probability for coherent resonant tunneling in terms of the Green's
function of the system.Comment: 16 pages,Figures available upon request,to appear in Phys.Rev B (15
April 1996
On the Reconstructed Fermi Surface in the Underdoped Cuprates
The Fermi surface topologies of underdoped samples the high-Tc superconductor
Bi2212 have been measured with angle resolved photoemission. By examining
thermally excited states above the Fermi level, we show that the Fermi surfaces
in the pseudogap phase of underdoped samples are actually composed of fully
enclosed hole pockets. The spectral weight of these pockets is vanishingly
small at the anti-ferromagnetic zone boundary, which creates the illusion of
Fermi "arcs" in standard photoemission measurements. The area of the pockets as
measured in this study is consistent with the doping level, and hence carrier
density, of the samples measured. Furthermore, the shape and area of the
pockets is well reproduced by a phenomenological model of the pseudogap phase
as a spin liquid.Comment: 4 pages, 4 figures. Submitted to Physics Review Letter
Simple Scheme for Efficient Linear Optics Quantum Gates
We describe the construction of a conditional quantum control-not (CNOT) gate
from linear optical elements following the program of Knill, Laflamme and
Milburn [Nature {\bf 409}, 46 (2001)]. We show that the basic operation of this
gate can be tested using current technology. We then simplify the scheme
significantly.Comment: Problems with PDF figures correcte
On-Chip Matching Networks for Radio-Frequency Single-Electron-Transistors
In this letter, we describe operation of a radio-frequency superconducting
single electron transistor (RF-SSET) with an on-chip superconducting LC
matching network consisting of a spiral inductor L and its capacitance to
ground. The superconducting network has a lower parasitic capacitance and gives
a better matching for the RF-SSET than does a commercial chip inductor.
Moreover, the superconducting network has negligibly low dissipation, leading
to sensitive response to changes in the RF-SSET impedance. The charge
sensitivity 2.4*10^-6 e/(Hz)^1/2 in the sub-gap region and energy sensitivity
of 1.9 hbar indicate that the RF-SSET is operating in the vicinity of the shot
noise limit.Comment: 3 pages, 3 figures, REVTeX 4. To appear in Appl. Phys. Let
Electromechanical coupling in free-standing AlGaN/GaN planar structures
The strain and electric fields present in free-standing AlGaN/GaN slabs are
examined theoretically within the framework of fully-coupled continuum elastic
and dielectric models. Simultaneous solutions for the electric field and strain
components are obtained by minimizing the electric enthalpy. We apply
constraints appropriate to pseudomorphic semiconductor epitaxial layers and
obtain closed-form analytic expressions that take into account the wurtzite
crystal anisotropy. It is shown that in the absence of free charges, the
calculated strain and electric fields are substantially differently from those
obtained using the standard model without electromechanical coupling. It is
also shown, however, that when a two-dimensional electron gas is present at the
AlGaN/GaN interface, a condition that is the basis for heterojunction
field-effect transistors, the electromechanical coupling is screened and the
decoupled model is once again a good approximation. Specific cases of these
calculations corresponding to transistor and superlattice structures are
discussed.Comment: revte
- …