605 research outputs found

    Harnessing Inherent Noises for Privacy Preservation in Quantum Machine Learning

    Full text link
    Quantum computing revolutionizes the way of solving complex problems and handling vast datasets, which shows great potential to accelerate the machine learning process. However, data leakage in quantum machine learning (QML) may present privacy risks. Although differential privacy (DP), which protects privacy through the injection of artificial noise, is a well-established approach, its application in the QML domain remains under-explored. In this paper, we propose to harness inherent quantum noises to protect data privacy in QML. Especially, considering the Noisy Intermediate-Scale Quantum (NISQ) devices, we leverage the unavoidable shot noise and incoherent noise in quantum computing to preserve the privacy of QML models for binary classification. We mathematically analyze that the gradient of quantum circuit parameters in QML satisfies a Gaussian distribution, and derive the upper and lower bounds on its variance, which can potentially provide the DP guarantee. Through simulations, we show that a target privacy protection level can be achieved by running the quantum circuit a different number of times.Comment: 6 pages, 4 figure

    A neural network model for constructing endophenotypes of common complex diseases: an application to male young-onset hypertension microarray data

    Get PDF
    Motivation: Identification of disease-related genes using high-throughput microarray data is more difficult for complex diseases as compared with monogenic ones. We hypothesized that an endophenotype derived from transcriptional data is associated with a set of genes corresponding to a pathway cluster. We assumed that a complex disease is associated with multiple endophenotypes and can be induced by their up/downregulated gene expression patterns. Thus, a neural network model was adopted to simulate the gene–endophenotype–disease relationship in which endophenotypes were represented by hidden nodes

    Analysis of spinal muscular atrophy carrier screening results in 32,416 pregnant women and 7,231 prepregnant women

    Get PDF
    ObjectivesSpinal muscular atrophy (SMA) is an autosomal recessive disease that is one of the most common in childhood neuromuscular disorders. Our screenings are more meaningful programs in preventing birth defects, providing a significant resource for healthcare professionals, genetic counselors, and policymakers involved in designing strategies to prevent and manage SMA.MethodWe screened 39,647 participants from 2020 to the present by quantitative real-time PCR, including 7,231 pre-pregnancy participants and 32,416 pregnancy participants, to detect the presence of SMN1 gene EX7 and EX8 deletion in the DNA samples provided by the subjects. To validate the accuracy of our findings, we also utilized the Multiplex Ligation-dependent Probe Amplification (MLPA) to confirm the reliability of screening results obtained by quantitative real-time PCR.ResultAmong the 39,647 participants who were screened, 726 participants were the carriers of SMN1. The overall carrier rate was calculated to be 1.83% (95% confidence interval: 0.86–2.8%). After undergoing screening, a total of 592 pregnancy carriers were provided with genetic counseling and only 503 of their spouses (84.97, 95% confidence interval: 82.09–87.85%) voluntarily underwent SMA screening.ConclusionThis study provides crucial insights into the prevalence and distribution of SMA carriers among the female population. The identification of 726 asymptomatic carriers highlights the necessity of comprehensive screening programs to identify at-risk individuals and ensure appropriate interventions are in place to minimize the impact of SMA-related conditions

    Antimicrobial Drug Resistance in Pathogens Causing Nosocomial Infections at a University Hospital in Taiwan, 1981-1999

    Get PDF
    To determine the distribution and antimicrobial drug resistance in bacterial pathogens causing nosocomial infections, surveillance data on nosocomial infections documented from 1981 to 1999 at National Taiwan University Hospital were analyzed. During this period, 35,580 bacterial pathogens causing nosocomial infections were identified. Candida species increased considerably, ranking first by 1999 in the incidence of pathogens causing all nosocomial infections, followed by Staphylococcus aureus and Pseudomonas aeruginosa. Candida species also increased in importance as bloodstream infection isolates, from 1.0% in 1981-1986 to 16.2% in 1999. The most frequent isolates from urinary tract infections were Candida species (23.6%), followed by Escherichia coli (18.6%) and P. aeruginosa (11.0%). P. aeruginosa remained the most frequent isolates for respiratory tract and surgical site infections in the past 13 years. A remarkable increase in incidence was found in methicillin-resistant S. aureus (from 4.3% in 1981-1986 to 58.9% in 1993-1998), cefotaxime-resistant E. coli (from 0% in 1981-1986 to 6.1% in 1993-1998), and cefotaxime-resistant Klebsiella pneumoniae (from 4.0% in 1981-1986 to 25.8% in 1993-1998). Etiologic shifts in nosocomial infections and an upsurge of antimicrobial resistance among these pathogens, particularly those isolated from intensive care units, are impressive and alarming

    Genetic Analysis of Floral Symmetry Transition in African Violet Suggests the Involvement of Trans-acting Factor for CYCLOIDEA Expression Shifts

    Get PDF
    With the growing demand for its ornamental uses, the African violet (Saintpaulia ionantha) has been popular owing to its variations in color, shape and its rapid responses to artificial selection. Wild type African violet (WT) is characterized by flowers with bilateral symmetry yet reversals showing radially symmetrical flowers such as dorsalized actinomorphic (DA) and ventralized actinomorphic (VA) peloria are common. Genetic crosses among WT, DA, and VA revealed that these floral symmetry transitions are likely to be controlled by three alleles at a single locus in which the levels of dominance are in a hierarchical fashion. To investigate whether the floral symmetry gene was responsible for these reversals, orthologs of CYCLOIDEA (CYC) were isolated and their expressions correlated to floral symmetry transitions. Quantitative RT-PCR and in situ results indicated that dorsal-specific SiCYC1s expression in WT S. ionantha (SCYC1A and SiCYC1B) shifted in DA with a heterotopically extended expression to all petals, but in VA, SiCYC1s' dorsally specific expressions were greatly reduced. Selection signature analysis revealed that the major high-expressed copy of SCYC1A had been constrained under purifying selection, whereas the low-expressed helper SiCYC1B appeared to be relaxed under purifying selection after the duplication into SCYC1A and SiCYC1B. Heterologous expression of SCYC1A in Arabdiopsis showed petal growth retardation which was attributed to limited cell proliferation. While expression shifts of SCYC1A and SiCYC1B correlate perfectly to the resulting symmetry phenotype transitions in F1s of WT and DA, there is no certain allelic combination of inherited SiCYC1s associated with specific symmetry phenotypes. This floral transition indicates that although the expression shifts of SCYC1A/1B are responsible for the two contrasting actinomorphic reversals in African violet, they are likely to be controlled by upstream trans-acting factors or epigenetic regulations

    An analysis of farmers' perception of the new cooperative medical system in Liaoning Province, China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Since 2003, the number of pilot areas of the New Rural Cooperative Medical System (NRCMS) has increased in rural China. And the major efforts have been concentrated on the enrollment of prospective members. In this study, we examined the satisfaction of the rural residents with the NRCMS as well as factors affecting their attitudes towards the NRCMS.</p> <p>Methods</p> <p>The data for this study were collected from a survey involving twenty counties in Liaoning Province. Interviews and focus groups were conducted between 10<sup>th </sup>January and 20<sup>th </sup>August 2008. A total of 2,780 people aged 18-72 were randomly selected and interviewed. Data were evaluated by nonparametric tests and ordinal regression models.</p> <p>Results</p> <p>71.6% of the study subjects were satisfied with the NRCMS. Single factor analysis showed that attitudes towards the NRCMS were influenced by gender, age, marital status, and self-rated health status. In the ordinal regression analysis, gender, age, and self-rated health status affect satisfaction (P < 0.05).</p> <p>Conclusions</p> <p>We found that a considerable proportion of farmers were satisfied with the NRCMS. Gender, age, and self-rated health status had significant effects on farmers' attitudes towards the NRCMS. The Chinese Central Government attempted to adopt active measures in the future to continuously improve the NRCMS, including initiating educational programs, building new medical facilities and increasing financial investment.</p

    Six-Year Regression and Progression of Cervical Lesions of Different Human Papillomavirus Viral Loads in Varied Histological Diagnoses

    Get PDF
    This study aims to evaluate HPV viral load as a biomarker for triage into colposcopy and CIN2 therapy, in order to reduce the colposcopy referral rate and CIN2 over treatment in low resource settings

    The genome sequence of the orchid Phalaenopsis equestris

    Get PDF
    Orchidaceae, renowned for its spectacular flowers and other reproductive and ecological adaptations, is one of the most diverse plant families. Here we present the genome sequence of the tropical epiphytic orchid Phalaenopsis equestris, a frequently used parent species for orchid breeding. P. equestris is the first plant with crassulacean acid metabolism (CAM) for which the genome has been sequenced. Our assembled genome contains 29,431 predicted protein-coding genes. We find that contigs likely to be underassembled, owing to heterozygosity, are enriched for genes that might be involved in self-incompatibility pathways. We find evidence for an orchid-specific paleopolyploidy event that preceded the radiation of most orchid clades, and our results suggest that gene duplication might have contributed to the evolution of CAM photosynthesis in P. equestris. Finally, we find expanded and diversified families of MADS-box C/D-class, B-class AP3 and AGL6-class genes, which might contribute to the highly specialized morphology of orchid flowers. (Résumé d'auteur
    corecore