97 research outputs found

    Characterization of the Shewanella oneidensis Fur gene: roles in iron and acid tolerance response

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Iron homeostasis is a key metabolism for most organisms. In many bacterial species, coordinate regulation of iron homeostasis depends on the protein product of a Fur gene. Fur also plays roles in virulence, acid tolerance, redox-stress responses, flagella chemotaxis and metabolic pathways.</p> <p>Results</p> <p>We conducted physiological and transcriptomic studies to characterize Fur in <it>Shewanella oneidensis</it>, with regard to its roles in iron and acid tolerance response. A <it>S. oneidensis</it><it>fur</it> deletion mutant was defective in growth under iron-abundant or acidic environment. However, it coped with iron depletion better than the wild-type strain MR-1. Further gene expression studies by microarray of the <it>fur</it> mutant confirmed previous findings that iron uptake genes were highly de-repressed in the mutant. Intriguingly, a large number of genes involved in energy metabolism were iron-responsive but Fur-independent, suggesting an intimate relationship of energy metabolism to iron response, but not to Fur. Further characterization of these genes in energy metabolism suggested that they might be controlled by transcriptional factor Crp, as shown by an enriched motif searching algorithm in the corresponding cluster of a gene co-expression network.</p> <p>Conclusion</p> <p>This work demonstrates that <it>S. oneidensis</it> Fur is involved in iron acquisition and acid tolerance response. In addition, analyzing genome-wide transcriptional profiles provides useful information for the characterization of Fur and iron response in <it>S. oneidensis</it>.</p

    Metal Reduction at Cold Temperatures by Shewanella Isolates from Various Marine Environments

    Get PDF
    Members of the genus Shewanella capable of reducing metals and forming minerals under cold-temperature conditions were isolated from 3 distinct marine habitats (the coast of Wash- ington State, the Puget Sound, and an iron-rich microbial mat off Hawaii). Cultures of microorgan- isms were isolated at 8°C on nutrient agar medium prepared in artificial seawater. Isolates in this study could use a wide variety of electron acceptors such as oxygen, nitrate, and metals, and reduce various metals coupled to the oxidation of several organic acids, glucose or hydrogen at temperatures down to 0°C. Akaganeite was reduced to either magnetite or siderite, depending on the test condi- tions. The geochemical profiles at the sample sites from which these strains were isolated spanned a temperature range of 1.8 to 11°C, and all showed active oxygen and nitrate reduction as well as metal reduction. This confirms previous reports that sediment microorganisms participating in biogeo- chemical cycles remain active at low temperatures

    Gene Expression Correlates with Process Rates Quantified for Sulfate- and Fe(III)-Reducing Bacteria in U(VI)-Contaminated Sediments

    Get PDF
    Though iron- and sulfate-reducing bacteria are well known for mediating uranium(VI) reduction in contaminated subsurface environments, quantifying the in situ activity of the microbial groups responsible remains a challenge. The objective of this study was to demonstrate the use of quantitative molecular tools that target mRNA transcripts of key genes related to Fe(III) and sulfate reduction pathways in order to monitor these processes during in situ U(VI) remediation in the subsurface. Expression of the Geobacteraceae-specific citrate synthase gene (gltA) and the dissimilatory (bi)sulfite reductase gene (dsrA), were correlated with the activity of iron- or sulfate-reducing microorganisms, respectively, under stimulated bioremediation conditions in microcosms of sediments sampled from the U.S. Department of Energy’s Oak Ridge Integrated Field Research Challenge (OR-IFRC) site at Oak Ridge, TN, USA. In addition, Geobacteraceae-specific gltA and dsrA transcript levels were determined in parallel with the predominant electron acceptors present in moderately and highly contaminated subsurface sediments from the OR-IFRC. Phylogenetic analysis of the cDNA generated from dsrA mRNA, sulfate-reducing bacteria-specific 16S rRNA, and gltA mRNA identified activity of specific microbial groups. Active sulfate reducers were members of the Desulfovibrio, Desulfobacterium, and Desulfotomaculum genera. Members of the subsurface Geobacter clade, closely related to uranium-reducing Geobacter uraniireducens and Geobacter daltonii, were the metabolically active iron-reducers in biostimulated microcosms and in situ core samples. Direct correlation of transcripts and process rates demonstrated evidence of competition between the functional guilds in subsurface sediments. We further showed that active populations of Fe(III)-reducing bacteria and sulfate-reducing bacteria are present in OR-IFRC sediments and are good potential targets for in situ bioremediation

    Establishment and metabolic analysis of a model microbial community for understanding trophic and electron accepting interactions of subsurface anaerobic environments

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Communities of microorganisms control the rates of key biogeochemical cycles, and are important for biotechnology, bioremediation, and industrial microbiological processes. For this reason, we constructed a model microbial community comprised of three species dependent on trophic interactions. The three species microbial community was comprised of <it>Clostridium cellulolyticum</it>, <it>Desulfovibrio vulgaris </it>Hildenborough, and <it>Geobacter sulfurreducens </it>and was grown under continuous culture conditions. Cellobiose served as the carbon and energy source for <it>C. cellulolyticum</it>, whereas <it>D. vulgaris </it>and <it>G. sulfurreducens </it>derived carbon and energy from the metabolic products of cellobiose fermentation and were provided with sulfate and fumarate respectively as electron acceptors.</p> <p>Results</p> <p>qPCR monitoring of the culture revealed <it>C. cellulolyticum </it>to be dominant as expected and confirmed the presence of <it>D. vulgaris </it>and <it>G. sulfurreducens</it>. Proposed metabolic modeling of carbon and electron flow of the three-species community indicated that the growth of <it>C. cellulolyticum </it>and <it>D. vulgaris </it>were electron donor limited whereas <it>G. sulfurreducens </it>was electron acceptor limited.</p> <p>Conclusions</p> <p>The results demonstrate that <it>C. cellulolyticum</it>, <it>D. vulgaris</it>, and <it>G. sulfurreducens </it>can be grown in coculture in a continuous culture system in which <it>D. vulgaris </it>and <it>G. sulfurreducens </it>are dependent upon the metabolic byproducts of <it>C. cellulolyticum </it>for nutrients. This represents a step towards developing a tractable model ecosystem comprised of members representing the functional groups of a trophic network.</p

    Snapshot of iron response in Shewanella oneidensis by gene network reconstruction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Iron homeostasis of <it>Shewanella oneidensis</it>, a γ-proteobacterium possessing high iron content, is regulated by a global transcription factor Fur. However, knowledge is incomplete about other biological pathways that respond to changes in iron concentration, as well as details of the responses. In this work, we integrate physiological, transcriptomics and genetic approaches to delineate the iron response of <it>S. oneidensis</it>.</p> <p>Results</p> <p>We show that the iron response in <it>S. oneidensis </it>is a rapid process. Temporal gene expression profiles were examined for iron depletion and repletion, and a gene co-expression network was reconstructed. Modules of iron acquisition systems, anaerobic energy metabolism and protein degradation were the most noteworthy in the gene network. Bioinformatics analyses suggested that genes in each of the modules might be regulated by DNA-binding proteins Fur, CRP and RpoH, respectively. Closer inspection of these modules revealed a transcriptional regulator (SO2426) involved in iron acquisition and ten transcriptional factors involved in anaerobic energy metabolism. Selected genes in the network were analyzed by genetic studies. Disruption of genes encoding a putative alcaligin biosynthesis protein (SO3032) and a gene previously implicated in protein degradation (SO2017) led to severe growth deficiency under iron depletion conditions. Disruption of a novel transcriptional factor (SO1415) caused deficiency in both anaerobic iron reduction and growth with thiosulfate or TMAO as an electronic acceptor, suggesting that SO1415 is required for specific branches of anaerobic energy metabolism pathways.</p> <p>Conclusion</p> <p>Using a reconstructed gene network, we identified major biological pathways that were differentially expressed during iron depletion and repletion. Genetic studies not only demonstrated the importance of iron acquisition and protein degradation for iron depletion, but also characterized a novel transcriptional factor (SO1415) with a role in anaerobic energy metabolism.</p

    Microbial Community Dynamics of Lactate Enriched Hanford Groundwaters

    Full text link
    The Department of Energy site at Hanford, WA, has been historically impacted by U and Cr from the nuclear weapons industry. In an attempt to stimulate microbial remediation of these metals, in-situ lactate enrichment experiments are ongoing. In order to bridge the gap from the laboratory to the field, we inoculated triplicate anaerobic, continuous-flow glass reactors with groundwater collected from well Hanford 100-H in order to obtain a stable, enriched community while selecting for metal-reducing bacteria. Each reactor was fed from a single carboy containing defined media with 30 mM lactate at a rate of 0.223 ml/min under continuous nitrogen flow at 9 ml/min. Cell counts, organic acids, gDNA (for qPCR and pyrosequencing) and gases were sampled during the experiment. Cell counts remained low (less than 1x107 cells/ml) during the first two weeks of the experiment, but by day 20, had reached a density greater than 1x108 cells/ml. Metabolite analysis showed a decrease in the lactate concentrations over time. Pyruvate concentrations ranged from 20-40 uM the first week of the experiment then was undetectable after day 10. Likewise, formate appeared in the reactors during the first week with concentrations of 1.48-1.65 mM at day 7 then the concentrations decreased to 0.69-0.95 on day 10 and were undetectable on day 15. Acetate was present in low amounts on day 3 (0.15-0.33 mM) and steadily increased to 3.35-5.22 mM over time. Similarly, carbon dioxide was present in low concentrations early on and increased to 0.28-0.35 mM as the experiment progressed. We also were able to detect low amounts of methane (10-20 uM) during the first week of the experiment, but by day 10 the methane was undetectable. From these results and pyrosequencing analysis, we conclude that a shift in the microbial community dynamics occurred over time to eventually form a stable and enriched microbial community. Comprehensive investigations such as these allow for the examination of not only which nutrient source will accelerate site remediation, but also provide insight to evaluate remediation strategies through which enriched community members are important for bioremediation

    A Microbe Associated with Sleep Revealed by a Novel Systems Genetic Analysis of the Microbiome in Collaborative Cross Mice.

    Get PDF
    The microbiome influences health and disease through complex networks of host genetics, genomics, microbes, and environment. Identifying the mechanisms of these interactions has remained challenging. Systems genetics in laboratory mice (Mus musculus) enables data-driven discovery of biological network components and mechanisms of host-microbial interactions underlying disease phenotypes. To examine the interplay among the whole host genome, transcriptome, and microbiome, we mapped QTL and correlated the abundance of cecal messenger RNA, luminal microflora, physiology, and behavior in a highly diverse Collaborative Cross breeding population. One such relationship, regulated by a variant on chromosome 7, was the association of Odoribacter (Bacteroidales) abundance and sleep phenotypes. In a test of this association in the BKS.Cg-Dock7m +/+ Leprdb/J mouse model of obesity and diabetes, known to have abnormal sleep and colonization by Odoribacter, treatment with antibiotics altered sleep in a genotype-dependent fashion. The many other relationships extracted from this study can be used to interrogate other diseases, microbes, and mechanisms
    corecore