30,124 research outputs found

    Monitoring the Thermal Power of Nuclear Reactors with a Prototype Cubic Meter Antineutrino Detector

    Get PDF
    In this paper, we estimate how quickly and how precisely a reactor's operational status and thermal power can be monitored over hour to month time scales, using the antineutrino rate as measured by a cubic meter scale detector. Our results are obtained from a detector we have deployed and operated at 25 meter standoff from a reactor core. This prototype can detect a prompt reactor shutdown within five hours, and monitor relative thermal power to three percent within seven days. Monitoring of short-term power changes in this way may be useful in the context of International Atomic Energy Agency's (IAEA) Reactor Safeguards Regime, or other cooperative monitoring regimes.Comment: 10 pages, 9 figure

    The impact of stochastic physics on climate sensitivity in EC-Earth

    Full text link
    Stochastic schemes, designed to represent unresolved sub-grid scale variability, are frequently used in short and medium-range weather forecasts, where they are found to improve several aspects of the model. In recent years, the impact of stochastic physics has also been found to be beneficial for the model's long term climate. In this paper, we demonstrate for the first time that the inclusion of a stochastic physics scheme can notably affect a model's projection of global warming, as well as its historical climatological global temperature. Specifically, we find that when including the 'stochastically perturbed parametrisation tendencies' scheme (SPPT) in the fully coupled climate model EC-Earth v3.1, the predicted level of global warming between 1850 and 2100 is reduced by 10% under an RCP8.5 forcing scenario. We link this reduction in climate sensitivity to a change in the cloud feedbacks with SPPT. In particular, the scheme appears to reduce the positive low cloud cover feedback, and increase the negative cloud optical feedback. A key role is played by a robust, rapid increase in cloud liquid water with SPPT, which we speculate is due to the scheme's non-linear interaction with condensation.Comment: Under review in Journal of Geophysical Research: Atmosphere

    SCIENCE CHOICE AT SCHOOL: GENDER AND THE RELATIVE IMPORTANCE OF FACTORS STUDENTS CONSIDER WHEN SELECTING SUBJECTS

    Full text link
    Science study at school has been linked to the provision of a scientifically capable workforce and a scientifically literate society. Concern has been expressed by educators, academics and policymakers that too few students are choosing post-compulsory science at school. Gender-based preferences for some science subjects has been cited as an important factor affecting choice of science at school. A Best-Worst Scaling survey was used to measure the relative importance of 21 factors that male and female students consider when choosing and rejecting subjects. Results from 333 Year 10 (age 14–17) students suggest that male and female students choose and reject subjects in a similar manner but there are differences in the degree of importance students place on some factors. Girls considered their interest, enjoyment, past ability and type of classwork as being relatively more important than boys did when choosing subjects. Girls considered their past ability and difficulty of a subject as more important than boys did when rejecting subjects. This research indicates that overall girls and boys rank the factors for choosing and rejecting subjects in a similar manner but there are differences in the importance they place on individual factors

    Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature)

    Get PDF
    Reactive gases and aerosols are produced by terrestrial ecosystems, processed within plant canopies, and can then be emitted into the above-canopy atmosphere. Estimates of the above-canopy fluxes are needed for quantitative earth system studies and assessments of past, present and future air quality and climate. The Model of Emissions of Gases and Aerosols from Nature (MEGAN) is described and used to quantify net terrestrial biosphere emission of isoprene into the atmosphere. MEGAN is designed for both global and regional emission modeling and has global coverage with ~1 km<sup>2</sup> spatial resolution. Field and laboratory investigations of the processes controlling isoprene emission are described and data available for model development and evaluation are summarized. The factors controlling isoprene emissions include biological, physical and chemical driving variables. MEGAN driving variables are derived from models and satellite and ground observations. Tropical broadleaf trees contribute almost half of the estimated global annual isoprene emission due to their relatively high emission factors and because they are often exposed to conditions that are conducive for isoprene emission. The remaining flux is primarily from shrubs which have a widespread distribution. The annual global isoprene emission estimated with MEGAN ranges from about 500 to 750 Tg isoprene (440 to 660 Tg carbon) depending on the driving variables which include temperature, solar radiation, Leaf Area Index, and plant functional type. The global annual isoprene emission estimated using the standard driving variables is ~600 Tg isoprene. Differences in driving variables result in emission estimates that differ by more than a factor of three for specific times and locations. It is difficult to evaluate isoprene emission estimates using the concentration distributions simulated using chemistry and transport models, due to the substantial uncertainties in other model components, but at least some global models produce reasonable results when using isoprene emission distributions similar to MEGAN estimates. In addition, comparison with isoprene emissions estimated from satellite formaldehyde observations indicates reasonable agreement. The sensitivity of isoprene emissions to earth system changes (e.g., climate and land-use) demonstrates the potential for large future changes in emissions. Using temperature distributions simulated by global climate models for year 2100, MEGAN estimates that isoprene emissions increase by more than a factor of two. This is considerably greater than previous estimates and additional observations are needed to evaluate and improve the methods used to predict future isoprene emissions

    Oceanic stochastic parametrizations in a seasonal forecast system

    Full text link
    We study the impact of three stochastic parametrizations in the ocean component of a coupled model, on forecast reliability over seasonal timescales. The relative impacts of these schemes upon the ocean mean state and ensemble spread are analyzed. The oceanic variability induced by the atmospheric forcing of the coupled system is, in most regions, the major source of ensemble spread. The largest impact on spread and bias came from the Stochastically Perturbed Parametrization Tendency (SPPT) scheme - which has proven particularly effective in the atmosphere. The key regions affected are eddy-active regions, namely the western boundary currents and the Southern Ocean. However, unlike its impact in the atmosphere, SPPT in the ocean did not result in a significant decrease in forecast error. Whilst there are good grounds for implementing stochastic schemes in ocean models, our results suggest that they will have to be more sophisticated. Some suggestions for next-generation stochastic schemes are made.Comment: 24 pages, 3 figure

    Oceanic stochastic parametrizations in a seasonal forecast system

    Get PDF
    We study the impact of three stochastic parametrizations in the ocean component of a coupled model, on forecast reliability over seasonal timescales. The relative impacts of these schemes upon the ocean mean state and ensemble spread are analyzed. The oceanic variability induced by the atmospheric forcing of the coupled system is, in most regions, the major source of ensemble spread. The largest impact on spread and bias came from the Stochastically Perturbed Parametrization Tendency (SPPT) scheme - which has proven particularly effective in the atmosphere. The key regions affected are eddy-active regions, namely the western boundary currents and the Southern Ocean. However, unlike its impact in the atmosphere, SPPT in the ocean did not result in a significant decrease in forecast error. Whilst there are good grounds for implementing stochastic schemes in ocean models, our results suggest that they will have to be more sophisticated. Some suggestions for next-generation stochastic schemes are made.Comment: 24 pages, 3 figure

    Strongly-coupled quantum critical point in an all-in-all-out antiferromagnet

    Get PDF
    Dimensionality and symmetry play deterministic roles in the laws of Nature. They are important tools to characterize and understand quantum phase transitions, especially in the limit of strong correlations between spin, orbit, charge, and structural degrees of freedom. Using newly-developed, high-pressure resonant x-ray magnetic and charge diffraction techniques, we have discovered a quantum critical point in Cd2Os2O7 as the all-in-all-out (AIAO) antiferromagnetic order is continuously suppressed to zero temperature and, concomitantly, the cubic lattice structure continuously changes from space group Fd-3m to F-43m. Surrounded by three phases of different time reversal and spatial inversion symmetries, the quantum critical region anchors two phase lines of opposite curvature, with striking departures from a mean-field form at high pressure. As spin fluctuations, lattice breathing modes, and quasiparticle excitations interact in the quantum critical region, we argue that they present the necessary components for strongly-coupled quantum criticality in this three-dimensional compound

    The role of body shape and mass in skimming on water

    Get PDF
    Over many years, there has been great practical interest in how solid bodies interact with and skim on liquid layers. In the present investigation, the focus is on the important role of body mass and shape in such skimming motions. Considering a thin two-dimensional solid body that impacts obliquely and then rebounds on a shallow inviscid water layer, we develop a mathematical model to predict quantitatively the duration and evolution of the body and fluid motions and indeed the success or failure of the whole skim. In the current setting, the shallow water layer thickness is small relative to the representative body length. The combined roles of increased mass and shape are found to be crucial, governed by a similarity solution. The relationship C ∼ M2/3 between scaled body curvature and mass is identified and highlighted. In particular, increased convex curvature of the underbody is found to alter the interactive pressure in such a way that it inhibits the occurrence of a super-elastic response in the exit vertical velocity and height of the body, and in effect enables a much heavier body to skim successfully provided the above relationship is maintained
    corecore