9 research outputs found

    Development of sustainable drinking water quality solutions for rural communities in the developing world

    No full text
    In developed countries potable water is usually taken for granted, where advanced infrastructure and a strong economy has allowed waterborne diseases (such as cholera and dysentery) to be virtually eradicated. In contrast, developing countries have poor infrastructure, lack development, stability and vibrancy. Consuming untreated, and potentially contaminated, groundwater extracted from shallow wells is the only option. The primary aim of this study was to undertake an extensive field water quality-sampling programme in rural villages throughout Malawi. About 95 % of all the wells tested failed to meet safe drinking water values for untreated water in the wet season, while about 80 % of the wells failed in the dry season. The main forms of contamination emanate from bacteriological and physical constituents. As noted in the United Nations post-2015 water agenda, water quality is just as important as water quantity—the two are inextricably linked. Hence, there is currently a great need to develop more appropriate, cost-effective options to treat water; particularly to reduce the 3.5 million deaths related to inadequate water supply and sanitation each year. Subsequently the aim was directed towards investigating a sustainable, yet appropriate, way to treat shallow well water to significantly improve quality. The most suitable method to remove coliforms and turbidity from water is via the process of coagulation, using aluminium sulphate (alum) or ferric sulphate (ferric). The limited availability and relative expense of these chemicals has led to other more appropriate indigenous coagulants being sought for developing countries. Natural plant extracts have been available for water purification for many centuries. However, the science and engineering application of the use of plant extracts have not really been developed. To start to address this, Leeds Beckett University and the University of Malawi—The Polytechnic have shown that a locally available plant extract, Moringa oleifera, which grows wild throughout rural villages in developing countries, can be used to improve water quality in the order of 80–94 %. The flocculent capacity of M. oleifera is closely comparable to that of a well-established chemical coagulant, alum

    The long-term hydrology of East Africa’s water tower: statistical change detection in the watersheds of the Abbay Basin

    Full text link
    Forty-five years (1960–2004) of hydrological data from 12 watersheds in the Abbay Basin, Ethiopia, were tested for possible trends over the entire time series and differences in medians (step-wise changes) between three sub-periods. The classification of the sub-periods was based on the major political changes in 1975 and 1991. Variables investigated were rainfall (P), total flow (Qt), high flow (Qh), low flow (Ql), low flow index (LFI) and run-off coefficient (C). Data were checked for outliers, errors and homogeneity. Trend was tested after serial and cross-correlation tests. The data for each variable were serially uncorrelated from 1 to 10 lag years. There were five globally significant trends out of 50 test cases and 36 significant step-wise changes out of 180 tests. The majority of the significant changes were watershed specific. Run-off coefficient was the single variable showing a consistently increasing trend and stood for ca. 25 % of the total significant trends and step-wise changes. Half of these changes occurred after 1991. We concluded that despite the land use policy changes in 1975 and 1991, as well as the long-term soil degradation, the hydrological regime was quite stable over the 45-year period, with the exception of an increase in the run-off coefficient in the latter part of the run-off record in some watersheds
    corecore