11 research outputs found

    Knobbed acrosome defect is associated with a region containing the genes STK17b and HECW2 on porcine chromosome 15

    Get PDF
    BACKGROUND: Male infertility is an increasing problem in all domestic species including man. Localization and identification of genes involved in defects causing male infertility provide valuable information of specific events in sperm development. Correct condensation of the sperm head and development of the acrosome are required for fertile sperm. In the Finnish Yorkshire pig population a knobbed acrosome defect (KAD) has been reported which appears to be of genetic origin. In previous studies we have shown that a large number of affected spermatozoa have a cystic swelling anterior to the apical part of the acrosome. RESULTS: Characterization of the knobbed acrosome affected sperm revealed that both the acrosomal granules and chromatin are affected. This type of KAD appears to be a previously unknown and serious form of the defect. A genome wide scan with PorcineSNP60 Genotyping BeadChip defined the KAD associated region within 0.7 Mbp on porcine chromosome 15. Two genes, STK17b and HECW2, located within this region were sequenced. The expression of these genes appeared comparable in KA-affected and control boars. The known function of HECW2 in acrosome development highlighted this gene as a good candidate responsible for the KAD. One nonsynonymous SNP was identified within the HECW2 gene. However, as this mutation was found in homozygous state in individuals with normal sperm, this is not likely to be the causal mutation. CONCLUSIONS: In this study we identified two candidate genes for a severe defect affecting both the sperm acrosome and chromatin that causes infertility. One of these genes, HECW2, plays an important role in ubiquitination, a prerequisite for chromatin remodelling and acrosome formation, highlighting the involvement of this gene in the knobbed acrosome defect and male infertility.Peer reviewe

    Expression patterns and prognostic relevance of subtype-specific transcription factors in surgically resected small cell lung cancer : an international multicenter study

    Get PDF
    The tissue distribution and prognostic relevance of subtype-specific proteins (ASCL1, NEUROD1, POU2F3, YAP1) present an evolving area of research in small cell lung cancer (SCLC). The expression of subtype-specific transcription factors and P53 and RB1 proteins were measured by immunohistochemistry (IHC) in 386 surgically resected SCLC samples. Correlations between subtype-specific proteins and in vitro efficacy of various therapeutic agents were investigated by proteomics and cell viability assays in 26 human SCLC cell lines. Besides SCLC-A (ASCL1-dominant), SCLC-AN (combined ASCL1/NEUROD1), SCLC-N (NEUROD1-dominant) and SCLC-P (POU2F3-dominant), IHC and cluster analyses identified a quadruple-negative SCLC subtype (SCLC-QN). No unique YAP1-subtype was found. The highest overall survival rates were associated with non-neuroendocrine subtypes (SCLC-P and SCLC-QN) and the lowest with neuroendocrine subtypes (SCLC-A, SCLC-N, SCLC-AN). In univariate analyses, high ASCL1 expression was associated with poor prognosis and high POU2F3 expression with good prognosis. Notably, high ASCL1 expression influenced survival outcomes independently of other variables in a multivariate model. High POU2F3 and YAP1 protein abundances correlated with sensitivity and resistance to standard-of-care chemotherapeutics, respectively. Specific correlation patterns were also found between the efficacy of targeted agents and subtype-specific protein abundances. In conclusion, we have investigated the clinicopathological relevance of SCLC molecular subtypes in a large cohort of surgically resected specimens. Differential IHC expression of ASCL1, NEUROD1 and POU2F3 defines SCLC subtypes. No YAP1-subtype can be distinguished by IHC. High POU2F3 expression is associated with improved survival in a univariate analysis, whereas elevated ASCL1 expression is an independent negative prognosticator. Proteomic and cell viability assays of human SCLC cell lines reveal distinct vulnerability profiles defined by transcription regulators

    Molecular profiles of small cell lung cancer subtypes : therapeutic implications

    No full text
    Small cell lung cancer (SCLC; accounting for approximately 13%–15% of all lung cancers) is an exceptionally lethal malignancy characterized by rapid doubling time and high propensity to metastasize. In contrast to the increasingly personalized therapies in other types of lung cancer, SCLC is still regarded as a homogeneous disease and the prognosis of SCLC patients remains poor. Recently, however, substantial progress has been made in our understanding of SCLC biology. Advances in genomics and development of new preclinical models have facilitated insights into the intratumoral heterogeneity and specific genetic alterations of this disease. This worldwide resurgence of studies on SCLC has ultimately led to the development of novel subtype-specific classifications primarily based on the neuroendocrine features and distinct molecular profiles of SCLC. Importantly, these biologically distinct subtypes might define unique therapeutic vulnerabilities. Herein, we summarize the current knowledge on the molecular profiles of SCLC subtypes with a focus on their potential clinical implications. Small cell lung cancer is still regarded as a homogeneous disease associated with poor prognosis. Recent analysis, however, has led to the development of novel subtype-specific classifications primarily based on the neuroendocrine features and molecular profiles. The better understanding of these biologically distinct subtypes might help to define unique therapeutic vulnerabilities

    Dual targeting of BCL-2 and MCL-1 in the presence of BAX breaks venetoclax resistance in human small cell lung cancer

    No full text
    Background: No targeted drugs are currently available against small cell lung cancer (SCLC). BCL-2 family members are involved in apoptosis regulation and represent therapeutic targets in many malignancies. Methods: Expression of BCL-2 family members in 27 SCLC cell lines representing all known four SCLC molecular subtypes was assessed by qPCR, Western blot and mass spectrometry-based proteomics. BCL-2 and MCL-1 inhibition (venetoclax and S63845, respectively) was assessed by MTT assay and flow cytometry and in mice bearing human SCLC tumours. Drug interactions were calculated using the Combenefit software. Ectopic BAX overexpression was achieved by expression plasmids. Results: The highest BCL-2 expression levels were detected in ASCL1- and POU2F3-driven SCLC cells. Although sensitivity to venetoclax was reflected by BCL-2 levels, not all cell lines responded consistently despite their high BCL-2 expression. MCL-1 overexpression and low BAX levels were both characteristic for venetoclax resistance in SCLC, whereas the expression of other BCL-2 family members did not affect therapeutic efficacy. Combination of venetoclax and S63845 resulted in significant, synergistic in vitro and in vivo anti-tumour activity and apoptosis induction in double-resistant cells; however, this was seen only in a subset with detectable BAX. In non-responding cells, ectopic BAX overexpression sensitised to venetoclax and S63845 and, furthermore, induced synergistic drug interaction. Conclusions: The current study reveals the subtype specificity of BCL-2 expression and sheds light on the mechanism of venetoclax resistance in SCLC. Additionally, we provide preclinical evidence that combined BCL-2 and MCL-1 targeting is an effective approach to overcome venetoclax resistance in high BCL-2-expressing SCLCs with intact BAX
    corecore