2,810 research outputs found

    The ISSC 2022 committee III.1-Ultimate strength benchmark study on the ultimate limit state analysis of a stiffened plate structure subjected to uniaxial compressive loads

    Get PDF
    This paper presents a benchmark study on the ultimate limit state analysis of a stiffened plate structure subjected to uniaxial compressive loads, initiated and coordinated by the ISSC 2022 technical committee III.1-Ultimate Strength. The overall objective of the benchmark is to establish predictions of the buckling collapse and ultimate strength of stiffened plate structures subjected to compressive loads. Participants were asked to perform ultimate strength predictions for a full-scale reference experiment on a stiffened steel plate structure utilizing any combination of class rules, guidelines, numerical approaches and simulation procedures as they saw fit. The benchmark study was carried out blind and divided into three phases. In the first phase, only descriptions of the experimental setup, the geometry of the reference structure, and the nominal material specifications were distributed. In the second phase, the actual properties of the reference structure were included. In the third and final phase, all available information on the reference structure and measured properties were distributed, including the material properties and laser-scanned geometry. This paper presents the results obtained from seventeen submitted FE simulations as well as details on the experiment. It also presents comparisons of the force versus the displacement curve, failure modes and locations for each phase, among others, and a discussion on the participants’ ability to predict the characteristics of the reference experiment with the information that is available for the phase. The outcome of the study is a discussion and recommendations regarding the design of finite element models for the ultimate state analysis of stiffened plate structures, with emphasis on the prediction of the ultimate capacity, force-displacement curve, and failure mode and location related to access to data, uncertainties and modeling of the material properties, geometric imperfections and distortions, and residual stresses

    Finite element modeling for the progressive collapse analysis of steel stiffened-plate structures in fires

    Get PDF
    In this study, novel honeycomb structures with twisted feature were designed and manufactured by laser powder bed fusion (LPBF). The manufacturability, microstructure evolution of LPBFed honeycomb components with twisted feature were studied. The influence of twist angle on the compressive behavior of components was experimentally investigated and the underlying mechanism was revealed using FE simulation. Results revealed that the material relative density of LPBFed components was reduced with the increase of twist angle, caused by the enlarging overhanging area. Different cooling rate of melt pool at different parts along the building direction resulted in different microstructures. The twist angle significantly affected the compressive behaviors of honeycomb structures. When the cell number along each side was 3, the honeycomb structure with 30° twist angle exhibited the most uniform stress distribution under compression, leading to the highest specific compressive strength and energy absorption ability. The influence of cell number and wall thickness on compressive properties of honeycomb structures with 30° twist angle were investigated through finite element simulation, and results revealed that the structure with 0.75 mm wall thickness and 3 unit cells along each side showed the highest specific energy absorption ability

    Effect of Mooring Line Layout on the Loads of Ship-shaped Offshore Installations

    Get PDF
    An offshore mooring system stations a ship-shaped offshore installation in place while withstanding incoming loads from the marine environment with short-term and long-term uncertainties. This study aims to develop a novel framework for analysing the loads on floating systems, namely mooring line tension, mooring line fatigue damage, and hull bending moment, as a function of the mooring layout design variables and environmental random variables. The nonlinear influence of those variables is assessed by means of advanced techniques using response charts, response divergence charts, and Sobol's total-effect sensitivity indexes. The developed procedure includes a probabilistic selection of mooring scenarios, station-keeping numerical analyses, and metamodel selection to define input loads. An example of a hypothetical floating production storage and offloading (FPSO) unit with taut legs in the Gulf of Mexico illustrates the procedure. The details of the computations are documented, and the findings show that the mooring line top-tension has a high total-effect index for the wave-induced bending moment and the total mooring line tension, whereas the fatigue damage is mostly affected by the chain diameter. The results of this research offer useful insights to designers and propose the use of a surrogate model to be used in the reliability-based design of mooring systems

    Ship-Shaped Offshore Installations: Design, Construction, Operation, Healthcare and Decommissioning

    Get PDF

    Advanced Structural Safety Studies with Extreme Conditions and Accidents

    Get PDF

    Strong-field effects in the Rabi oscillations of the superconducting phase qubit

    Full text link
    Rabi oscillations have been observed in many superconducting devices, and represent prototypical logic operations for quantum bits (qubits) in a quantum computer. We use a three-level multiphoton analysis to understand the behavior of the superconducting phase qubit (current-biased Josephson junction) at high microwave drive power. Analytical and numerical results for the ac Stark shift, single-photon Rabi frequency, and two-photon Rabi frequency are compared to measurements made on a dc SQUID phase qubit with Nb/AlOx/Nb tunnel junctions. Good agreement is found between theory and experiment.Comment: 4 pages, 4 figures, accepted for publication in IEEE Trans. Appl. Supercon

    Comparison of coherence times in three dc SQUID phase qubits

    Full text link
    We report measurements of spectroscopic linewidth and Rabi oscillations in three thin-film dc SQUID phase qubits. One device had a single-turn Al loop, the second had a 6-turn Nb loop, and the third was a first order gradiometer formed from 6-turn wound and counter-wound Nb coils to provide isolation from spatially uniform flux noise. In the 6 - 7.2 GHz range, the spectroscopic coherence times for the gradiometer varied from 4 ns to 8 ns, about the same as for the other devices (4 to 10 ns). The time constant for decay of Rabi oscillations was significantly longer in the single-turn Al device (20 to 30 ns) than either of the Nb devices (10 to 15 ns). These results imply that spatially uniform flux noise is not the main source of decoherence or inhomogenous broadening in these devices.Comment: 4 pages, 5 figures, accepted for publication in IEEE Trans. Appl. Supercon

    A long-term optical and X-ray ephemeris of the polar EK Ursae Majoris

    Full text link
    We searched for long-term period changes in the polar EK UMa using new optical data and archival X-ray/EUV data. An optical ephemeris was derived from data taken remotely with the MONET/N telescope and compared with the X-ray ephemeris based on Einstein, Rosat, and EUVE data. A three-parameter fit to the combined data sets yields the epoch, the period, and the phase offset between the optical minima and the X-ray absorption dips. An added quadratic term is insignificant and sets a limit to the period change. The derived linear ephemeris is valid over 30 years and the common optical and X-ray period is P=0.0795440225(24) days. There is no evidence of long-term O-C variations or a period change over the past 17 years Delta P = -0.14+-0.50 ms. We suggest that the observed period is the orbital period and that the system is tightly synchronized. The limit on Delta P and the phase constancy of the bright part of the light curve indicate that O-C variations of the type seen in the polars DP Leo and HU Aqr or the pre-CV NN Ser do not seem to occur in EK UMa. The X-ray dips lag the optical minima by 9.5+-0.7 deg in azimuth, providing some insight into the accretion geometry.Comment: 4 pages, 2 Postscript figures, accepted for publication in Astronomy & Astrophysic

    Matching-Adjusted Indirect Comparison (MAIC) of Tepotinib with Other MET Inhibitors for the Treatment of Advanced NSCLC with MET Exon 14 Skipping Mutations

    Get PDF
    Introduction MET exon 14 skipping in patients with advanced non-small cell lung cancer (aNSCLC), can be targeted with MET inhibitors including tepotinib, capmatinib, savolitinib, and crizotinib. Matching-adjusted indirect comparison (MAIC) methodology was used to compare outcomes data between agents and to address bias from differences in baseline characteristics. Methods Patient-level data from the VISION study (tepotinib) were weighted for comparison with aggregate data from the GEOMETRY mono-1 (capmatinib), NCT02897479 (savolitinib) and PROFILE 1001 (crizotinib) studies in patients with aNSCLC, using baseline characteristics prognostic for overall survival (OS) in VISION. Overall response rate (ORR), OS, progression-free survival (PFS), and duration of response (DOR) were compared. Patients were stratified by line of therapy: overall (all lines), previously treated, and treatment-naive. Results Improvements in ORR and all time-to-event endpoints were predicted for tepotinib compared with crizotinib and savolitinib in the different populations, although comparisons with savolitinib were hindered by considerable differences in baseline patient populations. Tepotinib appeared to be associated with prolonged PFS and OS compared with capmatinib in previously treated patients (PFS HR 0.54; 95% CI 0.36-0.83; OS HR 0.66; 95% CI 0.42-1.06) and the overall populations (PFS HR 0.60; 95% CI 0.43-0.86; OS HR 0.72; 95% CI 0.49-1.05), with smaller improvements in DOR. The ORR comparisons between tepotinib and capmatinib identified a swing of up to +/- 6 percentage points in the weighted tepotinib ORR depending on the population studied (treatment-naive vs. previously treated patients). Conclusions The MAIC identified potential differences in efficacy endpoints with the different MET inhibitors, and predicted prolonged PFS and OS with tepotinib compared with capmatinib and crizotinib. Although MAIC cannot balance for unobserved factors, it remains an informative method to contextualize single-arm studies, where head-to-head trials are unlikely to be feasible
    • …
    corecore