18,719 research outputs found

    A new solid-state logarithmic radiometer

    Get PDF
    Combination of temperature-compensated logarithmic amplifiers and p-i-n photodiodes operating in zero-bias mode provides lightweight radiometer for detecting spectral intensities encompassing more than three decades over a range of at least 300 to 800 nanometers at low power levels

    Diversity-induced resonance in a system of globally coupled linear oscillators

    Get PDF
    The purpose of this paper to analyze in some detail the arguably simplest case of diversity-induced reseonance: that of a system of globally-coupled linear oscillators subjected to a periodic forcing. Diversity appears as the parameters characterizing each oscillator, namely its mass, internal frequency and damping coefficient are drawn from a probability distribution. The main ingredients for the diversity-induced-resonance phenomenon are present in this system as the oscillators display a variability in the individual responses but are induced, by the coupling, to synchronize their responses. A steady state solution for this model is obtained. We also determine the conditions under which it is possible to find a resonance effect.Comment: Reported at the XI International Workshop "Instabilities and Nonequilibrium Structures" Vina del Mar (Chile

    XMM-Newton observations of the Seyfert 1 AGN H0557-385

    Full text link
    We present XMM-Newton observations of the Seyfert 1 AGN H0557-385. We have conducted a study into the warm absorber present in this source, and using high-resolution RGS data we find that the absorption can be characterised by two phases: a phase with log ionisation parameter xi of 0.50 (where xi is in units of ergs cm/s) and a column of 0.2e21 cm^-2, and a phase with log xi of 1.62 and a column of 1.3e22 cm^-2. An iron K alpha line is detected. Neutral absorption is also present in the source, and we discuss possible origins for this. On the assumption that the ionised absorbers originate as an outflow from the inner edge of the torus, we use a new method for finding the volume filling factor. Both phases of H0557-385 have small volume filling factors (< 1%). We also derive the volume filling factors for a sample of 23 AGN using this assumption and for the absorbers with log xi > 0.7 we find reasonable agreement with the filling factors obtained through the alternative method of equating the momentum flow of the absorbers to the momentum loss of the radiation field. By comparing the filling factors obtained by the two methods, we infer that some absorbers with log xi < 0.7 occur at significantly larger distances from the nucleus than the inner edge of the torus.Comment: Accepted for publication in MNRA

    Observation of infinite-range intensity correlations above, at and below the 3D Anderson localization transition

    Full text link
    We investigate long-range intensity correlations on both sides of the Anderson transition of classical waves in a three-dimensional (3D) disordered material. Our ultrasonic experiments are designed to unambiguously detect a recently predicted infinite-range C0 contribution, due to local density of states fluctuations near the source. We find that these C0 correlations, in addition to C2 and C3 contributions, are significantly enhanced near mobility edges. Separate measurements of the inverse participation ratio reveal a link between C0 and the anomalous dimension \Delta_2, implying that C0 may also be used to explore the critical regime of the Anderson transition.Comment: 13 pages, 11 figures (main text plus supplemental information). Updated version includes an improved introductory paragraph, minor text revisions, a revised title and additional supplemental information on the experimental detail

    GEMINGA'S SOFT X-RAY EMISSION AND THE STRUCTURE OF ITS SURFACE

    Get PDF
    We present a model to explain the decrease in the amplitude of the pulse profile with increasing energy observed in Geminga's soft X-ray surface thermal emission. We assume the presence of plates surrounded by a surface with very distinct physical properties: these two regions emit spectra of very distinct shapes which present a crossover, the warm plates emitting a softer spectrum than the colder surrounding surface. The strongly pulsed emission from the plates dominates at low energy while the surroundings emission dominates at high energy, producing naturally a strong decrease in the pulsed fraction. In our illustrative example the plates are assumed to be magnetized while the rest of the surface is field free. This plate structure may be seen as a schematic representation of a continuous but very nonuniform distribution of the surface magnetic field or as a quasi realistic structure induced by past tectonic activity on Geminga.Comment: 10 pages, AASTeX latex, + 3 figures (compressed 7 uuencoded). Submitted to Ap. J. Let

    Magneto-elastic oscillations of neutron stars: exploring different magnetic field configurations

    Full text link
    We study magneto-elastic oscillations of highly magnetized neutron stars (magnetars) which have been proposed as an explanation for the quasi-periodic oscillations (QPOs) appearing in the decaying tail of the giant flares of soft gamma-ray repeaters (SGRs). We extend previous studies by investigating various magnetic field configurations, computing the Alfv\'en spectrum in each case and performing magneto-elastic simulations for a selected number of models. By identifying the observed frequencies of 28 Hz (SGR 1900+14) and 30 Hz (SGR 1806-20) with the fundamental Alfv\'en QPOs, we estimate the required surface magnetic field strength. For the magnetic field configurations investigated (dipole-like poloidal, mixed toroidal-poloidal with a dipole-like poloidal component and a toroidal field confined to the region of field lines closing inside the star, and for poloidal fields with an additional quadrupole-like component) the estimated dipole spin-down magnetic fields are between 8x10^14 G and 4x10^15 G, in broad agreement with spin-down estimates for the SGR sources producing giant flares. A number of these models exhibit a rich Alfv\'en continuum revealing new turning points which can produce QPOs. This allows one to explain most of the observed QPO frequencies as associated with magneto-elastic QPOs. In particular, we construct a possible configuration with two turning points in the spectrum which can explain all observed QPOs of SGR 1900+14. Finally, we find that magnetic field configurations which are entirely confined in the crust (if the core is assumed to be a type I superconductor) are not favoured, due to difficulties in explaining the lowest observed QPO frequencies (f<30 Hz).Comment: 21 pages, 16 figures, 6 tables, matched to version accepted by MNRAS with extended comparison/discussion to previous wor

    Recurrent scattering and memory effect at the Anderson localization transition

    Full text link
    We report on ultrasonic measurements of the propagation operator in a strongly scattering mesoglass. The backscattered field is shown to display a deterministic spatial coherence due to a remarkably large memory effect induced by long recurrent trajectories. Investigation of the recurrent scattering contribution directly yields the probability for a wave to come back close to its starting spot. The decay of this quantity with time is shown to change dramatically near the Anderson localization transition. The singular value decomposition of the propagation operator reveals the dominance of very intense recurrent scattering paths near the mobility edge.Comment: 5 pages, 4 figure

    Relaxation kinetics of biological dimer adsorption models

    Full text link
    We discuss the relaxation kinetics of a one-dimensional dimer adsorption model as recently proposed for the binding of biological dimers like kinesin on microtubules. The non-equilibrium dynamics shows several regimes: irreversible adsorption on short time scales, an intermediate plateau followed by a power-law regime and finally exponential relaxation towards equilibrium. In all four regimes we give analytical solutions. The algebraic decay and the scaling behaviour can be explained by mapping onto a simple reaction-diffusion model. We show that there are several possibilities to define the autocorrelation function and that they all asymptotically show exponential decay, however with different time constants. Our findings remain valid if there is an attractive interaction between bound dimers.Comment: REVTeX, 6 pages, 5 figures; to appear in Europhys. Letters; a Java applet showing the simulation is accessible at http://www.ph.tum.de/~avilfan/rela
    corecore