721 research outputs found

    The magnitude distribution of earthquakes near Southern California faults

    Get PDF
    We investigate seismicity near faults in the Southern California Earthquake Center Community Fault Model. We search for anomalously large events that might be signs of a characteristic earthquake distribution. We find that seismicity near major fault zones in Southern California is well modeled by a Gutenberg-Richter distribution, with no evidence of characteristic earthquakes within the resolution limits of the modern instrumental catalog. However, the b value of the locally observed magnitude distribution is found to depend on distance to the nearest mapped fault segment, which suggests that earthquakes nucleating near major faults are likely to have larger magnitudes relative to earthquakes nucleating far from major faults

    Detection of an X-ray periodicity in the Narrow-line Seyfert 1 Galaxy Mrk 766 with XMM-Newton

    Get PDF
    We have analyzed the timing properties of the Narrow-line Seyfert 1 galaxy Mrk 766 observed with XMM-Newton during the PV phase. The source intensity changes by a factor of 1.3 over the 29,000 second observation. If the soft excess is modeled by a black body component, as indicated by the EPIC pn data, the luminosity of the black body component scales with its temperature according to L ~ T^4. This requires a lower limit 'black body size` of about 1.3*10^25 cm^2. In addition, we report the detection of a strong periodic signal with 2.4*10^-4 Hz. Simulations of light curves with the observed time sequence and phase randomized for a red noise spectrum clearly indicate that the periodicity peak is intrinsic to the distant AGN. Furthermore, its existence is confirmed by the EPIC MOS and RGS data. The spectral fitting results show that the black body temperature and the absorption by neutral hydrogen remain constant during the periodic oscillations. This observational fact tends to rule out models in which the intensity changes are due to hot spots orbiting the central black hole. Precession according to the Bardeen-Petterson effect or instabilities in the inner accretion disk may provide explanations for the periodic signal.Comment: 6 pages, 8 Figures, accepted for publication in the special A&A Letters issue for XMM-Newton; corrections in Section 2.2 require

    Limits of Earthquake Early Warning Accuracy and Best Alerting Strategy

    Get PDF
    We explore how accurate earthquake early warning (EEW) can be, given our limited ability to forecast expected shaking even if the earthquake source is known. Because of the strong variability of ground motion metrics, such as peak ground acceleration (PGA) and peak ground velocity (PGV), we find that correct alerts (i.e., alerts that accurately estimate the ground motion will be above a predetermined damage threshold) are not expected to be the most common EEW outcome even when the earthquake magnitude and location are accurately determined. Infrequently, ground motion variability results in a user receiving a false alert because the ground motion turned out to be significantly smaller than the system expected. More commonly, users will experience missed alerts when the system does not issue an alert but the user experiences potentially damaging shaking. Despite these inherit limitations, EEW can significantly mitigate earthquake losses for false-alert-tolerant users who choose to receive alerts for expected ground motions much smaller than the level that could cause damage. Although this results in many false alerts (unnecessary alerts for earthquakes that do not produce damaging ground shaking), it minimizes the number of missed alerts and produces overall optimal performance

    Swift-UVOT detection of GRB 050318

    Full text link
    We present observations of GRB 050318 by the Ultra-Violet and Optical Telescope (UVOT) on-board the Swift observatory. The data are the first detections of a Gamma Ray Burst (GRB) afterglow decay by the UVOT instrument, launched specifically to open a new window on these transient sources. We showcase UVOTs ability to provide multi-color photometry and the advantages of combining UVOT data with simultaneous and contemporaneous observations from the high-energy detectors on the Swift spacecraft. Multiple filters covering 1,800-6,000 Angstroms reveal a red source with spectral slope steeper than the simultaneous X-ray continuum. Spectral fits indicate that the UVOT colors are consistent with dust extinction by systems at z = 1.2037 and z = 1.4436, redshifts where absorption systems have been pre-identified. However, the data can be most-easily reproduced with models containing a foreground system of neutral gas redshifted by z = 2.8 +/- 0.3. For both of the above scenarios, spectral and decay slopes are, for the most part, consistent with fireball expansion into a uniform medium, provided a cooling break occurs between the energy ranges of the UVOT and Swifts X-ray instrumentation.Comment: 15 pages, 4 figures, ApJ Letters, in pres

    Ultraviolet, Optical, and X-Ray Observations of the Type Ia Supernova 2005am with Swift

    Full text link
    We present ultraviolet and optical light curves in six broadband filters and grism spectra obtained by Swift's Ultraviolet/Optical Telescope for the Type Ia supernova SN2005am. The data were collected beginning about four days before the B-band maximum, with excellent coverage of the rapid decline phase and later observations extending out to 69 days after the peak. The optical and near UV light curve match well those of SN1992A. The other UV observations constitute the first set of light curves shorter than 2500 Angstroms and allow us to compare the light curve evolution in three UV bands. The UV behavior of this and other low redshift supernovae can be used to constrain theories of progenitor evolution or to interpret optical light curves of high redshift supernovae. Using Swift's X-Ray Telescope, we also report the upper limit to SN2005am's X-ray luminosity to be 1.77 x 10^40 erg s^-1 in the 0.3--10 keV range from 58,117 s of exposure time.Comment: 15 pages, including 3 figures and 2 tables, submitted to Astrophysical Journa

    Paper II: Calibration of the Swift ultraviolet/optical telescope

    Full text link
    The Ultraviolet/Optical Telescope (UVOT) is one of three instruments onboard the Swift observatory. The photometric calibration has been published, and this paper follows up with details on other aspects of the calibration including a measurement of the point spread function with an assessment of the orbital variation and the effect on photometry. A correction for large scale variations in sensitivity over the field of view is described, as well as a model of the coincidence loss which is used to assess the coincidence correction in extended regions. We have provided a correction for the detector distortion and measured the resulting internal astrometric accuracy of the UVOT, also giving the absolute accuracy with respect to the International Celestial Reference System. We have compiled statistics on the background count rates, and discuss the sources of the background, including instrumental scattered light. In each case we describe any impact on UVOT measurements, whether any correction is applied in the standard pipeline data processing or whether further steps are recommended.Comment: Accepted for publication in MNRAS. 15 pages, 21 figures, 4 table

    Black Holes and Massive Remnants

    Full text link
    This paper revisits the conundrum faced when one attempts to understand the dynamics of black hole formation and evaporation without abandoning unitary evolution. Previous efforts to resolve this puzzle assume that information escapes in corrections to the Hawking process, that an arbitrarily large amount of information is transmitted by a planckian energy or contained in a Planck-sized remnant, or that the information is lost to another universe. Each of these possibilities has serious difficulties. This paper considers another alternative: remnants that carry large amounts of information and whose size and mass depend on their information content. The existence of such objects is suggested by attempts to incorporate a Planck scale cutoff into physics. They would greatly alter the late stages of the evaporation process. The main drawback of this scenario is apparent acausal behavior behind the horizon.Comment: 16 pages + 3 Fig

    Swift panchromatic observations of the bright gamma-ray burst GRB050525a

    Get PDF
    The bright gamma-ray burst GRB050525a has been detected with the Swift observatory, providing unique multiwavelength coverage from the very earliest phases of the burst. The X-ray and optical/UV afterglow decay light curves both exhibit a steeper slope ~0.15 days after the burst, indicative of a jet break. This jet break time combined with the total gamma-ray energy of the burst constrains the opening angle of the jet to be 3.2 degrees. We derive an empirical `time-lag' redshift from the BAT data of z_hat = 0.69 +/- 0.02, in good agreement with the spectroscopic redshift of 0.61. Prior to the jet break, the X-ray data can be modelled by a simple power law with index alpha = -1.2. However after 300 s the X-ray flux brightens by about 30% compared to the power-law fit. The optical/UV data have a more complex decay, with evidence of a rapidly falling reverse shock component that dominates in the first minute or so, giving way to a flatter forward shock component at later times. The multiwavelength X-ray/UV/Optical spectrum of the afterglow shows evidence for migration of the electron cooling frequency through the optical range within 25000 s. The measured temporal decay and spectral indices in the X-ray and optical/UV regimes compare favourably with the standard fireball model for Gamma-ray bursts assuming expansion into a constant density interstellar medium.Comment: 31 pages, 7 figures, referee comments implemented, typo corrected in author list, accepted by Ap

    The First Swift Ultra-Violet/Optical Telescope GRB Afterglow Catalog

    Full text link
    We present the first Swift Ultra-Violet/Optical Telescope (UVOT) gamma-ray burst (GRB) afterglow catalog. The catalog contains data from over 64,000 independent UVOT image observations of 229 GRBs first detected by Swift, the High Energy Transient Explorer 2 (HETE2), the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL), and the Interplanetary Network (IPN). The catalog covers GRBs occurring during the period from 2005 Jan 17 to 2007 Jun 16 and includes ~86% of the bursts detected by the Swift Burst Alert Telescope (BAT). The catalog provides detailed burst positional, temporal, and photometric information extracted from each of the UVOT images. Positions for bursts detected at the 3-sigma-level are provided with a nominal accuracy, relative to the USNO-B1 catalog, of ~0.25 arcseconds. Photometry for each burst is given in three UV bands, three optical bands, and a 'white' or open filter. Upper limits for magnitudes are reported for sources detected below 3-sigma. General properties of the burst sample and light curves, including the filter-dependent temporal slopes, are also provided. The majority of the UVOT light curves, for bursts detected at the 3-sigma-level, can be fit by a single power-law, with a median temporal slope (alpha) of 0.96, beginning several hundred seconds after the burst trigger and ending at ~1x10^5 s. The median UVOT v-band (~5500 Angstroms) magnitude at 2000 s for a sample of "well" detected bursts is 18.02. The UVOT flux interpolated to 2000 s after the burst, shows relatively strong correlations with both the prompt Swift BAT fluence, and the Swift X-ray flux at 11 hours after the trigger.Comment: 60 pages, 17 figures, 8 tables, accepted for publication by the Astrophysical Journa

    Optimal Coaddition of Imaging Data for Rapidly Fading Gamma-Ray Burst Afterglows

    Full text link
    We present a technique for optimal coaddition of image data for rapidly varying sources, with specific application to gamma-ray burst (GRB) afterglows. Unweighted coaddition of rapidly fading afterglow lightcurve data becomes counterproductive relatively quickly. It is better to stop coaddition of the data once noise dominates late exposures. A better alternative is to optimally weight each exposure to maximize the signal-to-noise ratio (S/N) of the final coadded image data. By using information about GRB lightcurves and image noise characteristics, optimal image coaddition increases the probability of afterglow detection and places the most stringent upper limits on non-detections. For a temporal power law flux decay typical of GRB afterglows, optimal coaddition has the greatest potential to improve the S/N of afterglow imaging data (relative to unweighted coaddition), when the decay rate is high, the source count rate is low, and the background rate is high. The optimal coaddition technique is demonstrated with applications to Swift Ultraviolet/Optical Telescope (UVOT) data of several GRBs, with and without detected afterglows.Comment: 17 pages, accepted for publication in Ap
    corecore