17,199 research outputs found

    Speed of reaction diffusion in embryogenesis

    Get PDF
    Reaction diffusion systems have been proposed as mechanisms for patterning during many stages of embryonic development. While much attention has been focused on the study of the steady state patterns formed and the robustness of pattern selection, much less is known about the time scales required for pattern formation. Studies of gradient formation by the diffusion of a single morphogen from a localized source have shown that patterning can occur on realistic time scales over distances of a millimeter or less. Reaction diffusion has the potential to give rise to patterns on a faster time scale, since all points in the domain can act as sources of morphogen. However, the speed at which patterning can occur has hitherto not been explored in depth. In this paper, we investigate this issue in specific reaction diffusion models and address the question of whether patterning via reaction diffusion is fast enough to be applicable to morphogenesis

    Complex pattern formation in reaction diffusion systems with spatially-varying parameters

    Get PDF
    Spontaneous pattern formation in reaction–diffusion systems on a spatially homogeneous domain has been well studied. However, in embryonic development and elsewhere, pattern formation often takes place on a spatially heterogeneous background. We explore the effects of spatially varying parameters on pattern formation in one and two dimensions using the Gierer–Meinhardt reaction–diffusion model. We investigate the effect of the wavelength of a pre-pattern and demonstrate a novel form of moving pattern. We find that spatially heterogeneous parameters can both increase the range and complexity of possible patterns and enhance the robustness of pattern selection

    An Updated Ultraviolet Calibration for the Swift/UVOT

    Full text link
    We present an updated calibration of the Swift/UVOT broadband ultraviolet (uvw1, uvm2, and uvw2) filters. The new calibration accounts for the ~1% per year decline in the UVOT sensitivity observed in all filters, and makes use of additional calibration sources with a wider range of colours and with HST spectrophotometry. In this paper we present the new effective area curves and instrumental photometric zeropoints and compare with the previous calibration.Comment: 4 pages, 3 figures, 2 tables. Presented at GRB 2010 symposium, Annapolis, November 2010 to be published in American Institute of Physics Conference Serie

    X-ray and UV observations of V751 Cyg in an optical high state

    Full text link
    Aims: The VY Scl system (anti-dwarf nova) V751 Cyg is examined following a claim of a super-soft spectrum in the optical low state. Methods: A serendipitous XMM-Newton X-ray observation and, 21 months later, Swift X-ray and UV observations, have provided the best such data on this source so far. These optical high-state datasets are used to study the flux and spectral variability of V751 Cyg. Results: Both the XMM-Newton and Swift data show evidence for modulation of the X-rays for the first time at the known 3.467 hr orbital period of V751 Cyg. In two Swift observations, taken ten days apart, the mean X-ray flux remained unchanged, while the UV source brightened by half a magnitude. The X-ray spectrum was not super-soft during the optical high state, but rather due to multi-temperature optically thin emission, with significant (10^{21-22} cm^-2) absorption, which was higher in the observation by Swift than that of XMM-Newton. The X-ray flux is harder at orbital minimum, suggesting that the modulation is related to absorption, perhaps linked to the azimuthally asymmetric wind absorption seen previously in H-alpha.Comment: 6 pages, 9 figures, accepted for publication in A&

    Magneto-elastic oscillations of neutron stars: exploring different magnetic field configurations

    Full text link
    We study magneto-elastic oscillations of highly magnetized neutron stars (magnetars) which have been proposed as an explanation for the quasi-periodic oscillations (QPOs) appearing in the decaying tail of the giant flares of soft gamma-ray repeaters (SGRs). We extend previous studies by investigating various magnetic field configurations, computing the Alfv\'en spectrum in each case and performing magneto-elastic simulations for a selected number of models. By identifying the observed frequencies of 28 Hz (SGR 1900+14) and 30 Hz (SGR 1806-20) with the fundamental Alfv\'en QPOs, we estimate the required surface magnetic field strength. For the magnetic field configurations investigated (dipole-like poloidal, mixed toroidal-poloidal with a dipole-like poloidal component and a toroidal field confined to the region of field lines closing inside the star, and for poloidal fields with an additional quadrupole-like component) the estimated dipole spin-down magnetic fields are between 8x10^14 G and 4x10^15 G, in broad agreement with spin-down estimates for the SGR sources producing giant flares. A number of these models exhibit a rich Alfv\'en continuum revealing new turning points which can produce QPOs. This allows one to explain most of the observed QPO frequencies as associated with magneto-elastic QPOs. In particular, we construct a possible configuration with two turning points in the spectrum which can explain all observed QPOs of SGR 1900+14. Finally, we find that magnetic field configurations which are entirely confined in the crust (if the core is assumed to be a type I superconductor) are not favoured, due to difficulties in explaining the lowest observed QPO frequencies (f<30 Hz).Comment: 21 pages, 16 figures, 6 tables, matched to version accepted by MNRAS with extended comparison/discussion to previous wor

    Going nuclear: gene family evolution and vertebrate phylogeny reconciled

    Get PDF
    Gene duplications have been common throughout vertebrate evolution, introducing paralogy and so complicating phylogenctic inference from nuclear genes. Reconciled trees are one method capable of dealing with paralogy, using the relationship between a gene phylogeny and the phylogeny of the organisms containing those genes to identify gene duplication events. This allows us to infer phylogenies from gene families containing both orthologous and paralogous copies. Vertebrate phylogeny is well understood from morphological and palaeontological data, but studies using mitochondrial sequence data have failed to reproduce this classical view. Reconciled tree analysis of a database of 118 vertebrate gene families supports a largely classical vertebrate phylogeny

    A window into the neutron star: Modelling the cooling of accretion heated neutron star crusts

    Full text link
    In accreting neutron star X-ray transients, the neutron star crust can be substantially heated out of thermal equilibrium with the core during an accretion outburst. The observed subsequent cooling in quiescence (when accretion has halted) offers a unique opportunity to study the structure and thermal properties of the crust. Initially crust cooling modelling studies focussed on transient X-ray binaries with prolonged accretion outbursts (> 1 year) such that the crust would be significantly heated for the cooling to be detectable. Here we present the results of applying a theoretical model to the observed cooling curve after a short accretion outburst of only ~10 weeks. In our study we use the 2010 outburst of the transiently accreting 11 Hz X-ray pulsar in the globular cluster Terzan 5. Observationally it was found that the crust in this source was still hot more than 4 years after the end of its short accretion outburst. From our modelling we found that such a long-lived hot crust implies some unusual crustal properties such as a very low thermal conductivity (> 10 times lower than determined for the other crust cooling sources). In addition, we present our preliminary results of the modelling of the ongoing cooling of the neutron star in MXB 1659-298. This transient X-ray source went back into quiescence in March 2017 after an accretion phase of ~1.8 years. We compare our predictions for the cooling curve after this outburst with the cooling curve of the same source obtained after its previous outburst which ended in 2001.Comment: 4 pages, 1 figure, to appear in the proceedings of "IAUS 337: Pulsar Astrophysics - The Next 50 Years" eds: P. Weltevrede, B.B.P. Perera, L. Levin Preston & S. Sanida

    Increased susceptibility to proactive interference in adults with dyslexia?

    Get PDF
    Recent findings show that people with dyslexia have an impairment in serial-order memory. Based on these findings, the present study aimed to test the hypothesis that people with dyslexia have difficulties dealing with proactive interference (PI) in recognition memory. A group of 25 adults with dyslexia and a group of matched controls were subjected to a 2-back recognition task, which required participants to indicate whether an item (mis)matched the item that had been presented 2 trials before. PI was elicited using lure trials in which the item matched the item in the 3-back position instead of the targeted 2-back position. Our results demonstrate that the introduction of lure trials affected 2-back recognition performance more severely in the dyslexic group than in the control group, suggesting greater difficulty in resisting PI in dyslexia.Peer reviewedFinal Accepted Versio

    A panchromatic analysis of starburst galaxy M82: Probing the dust properties

    Get PDF
    (Abridged) We combine NUV, optical and IR imaging of the nearby starburst galaxy M82 to explore the properties of the dust both in the interstellar medium of the galaxy and the dust entrained in the superwind. The three NUV filters of Swift/UVOT enable us to probe in detail the properties of the extinction curve in the region around the 2175A bump. The NUV colour-colour diagram strongly rules out a Calzetti-type law, which can either reflect intrinsic changes in the dust properties or in the star formation history compared to starbursts well represented by such an attenuation law. We emphasize that it is mainly in the NUV region where a standard Milky-Way-type law is preferred over a Calzetti law. The age and dust distribution of the stellar populations is consistent with the scenario of an encounter with M81 in the recent 400 Myr. The radial gradients of the NUV and optical colours in the superwind region support the hypothesis that the emission in the wind cone is driven by scattering from dust grains entrained in the ejecta. The observed wavelength dependence reveals either a grain size distribution n(a)a2.5n(a)\propto a^{-2.5}, where aa is the size of the grain, or a flatter distribution with a maximum size cutoff, suggesting that only small grains are entrained in the supernovae-driven wind.Comment: 12 pages, 12 figures, 3 tables, MNRAS, in pres
    corecore