495 research outputs found

    Cross-intersecting families of vectors

    Get PDF
    Given a sequence of positive integers p=(p1,...,pn)p = (p_1, . . ., p_n), let SpS_p denote the family of all sequences of positive integers x=(x1,...,xn)x = (x_1,...,x_n) such that xipix_i \le p_i for all ii. Two families of sequences (or vectors), A,BSpA,B \subseteq S_p, are said to be rr-cross-intersecting if no matter how we select xAx \in A and yBy \in B, there are at least rr distinct indices ii such that xi=yix_i = y_i. We determine the maximum value of AB|A|\cdot|B| over all pairs of rr- cross-intersecting families and characterize the extremal pairs for r1r \ge 1, provided that minpi>r+1\min p_i >r+1. The case minpir+1\min p_i \le r+1 is quite different. For this case, we have a conjecture, which we can verify under additional assumptions. Our results generalize and strengthen several previous results by Berge, Frankl, F\"uredi, Livingston, Moon, and Tokushige, and answers a question of Zhang

    Decomposition of multiple packings with subquadratic union complexity

    Get PDF
    Suppose kk is a positive integer and X\mathcal{X} is a kk-fold packing of the plane by infinitely many arc-connected compact sets, which means that every point of the plane belongs to at most kk sets. Suppose there is a function f(n)=o(n2)f(n)=o(n^2) with the property that any nn members of X\mathcal{X} determine at most f(n)f(n) holes, which means that the complement of their union has at most f(n)f(n) bounded connected components. We use tools from extremal graph theory and the topological Helly theorem to prove that X\mathcal{X} can be decomposed into at most pp (11-fold) packings, where pp is a constant depending only on kk and ff.Comment: Small generalization of the main result, improvements in the proofs, minor correction

    Every graph admits an unambiguous bold drawing

    Get PDF
    Let r and w be fixed positive numbers, w < r. In a bold drawing of a graph, every vertex is represented by a disk of radius r, and every edge by a narrow rectangle of width w. We solve a problem of van Kreveld [10] by showing that every graph admits a bold drawing in which the region occupied by the union of the disks and rectangles representing the vertices and edges does not contain any disk of radius r other than the ones representing the vertices. © 2015, Brown University. All rights reserved

    The visible perimeter of an arrangement of disks

    Get PDF
    Given a collection of n opaque unit disks in the plane, we want to find a stacking order for them that maximizes their visible perimeter---the total length of all pieces of their boundaries visible from above. We prove that if the centers of the disks form a dense point set, i.e., the ratio of their maximum to their minimum distance is O(n^1/2), then there is a stacking order for which the visible perimeter is Omega(n^2/3). We also show that this bound cannot be improved in the case of a sufficiently small n^1/2 by n^1/2 uniform grid. On the other hand, if the set of centers is dense and the maximum distance between them is small, then the visible perimeter is O(n^3/4) with respect to any stacking order. This latter bound cannot be improved either. Finally, we address the case where no more than c disks can have a point in common. These results partially answer some questions of Cabello, Haverkort, van Kreveld, and Speckmann.Comment: 12 pages, 5 figure
    corecore