80 research outputs found

    Flow Residence Time and Regions of Intraluminal Thrombus Deposition in Intracranial Aneurysms

    Get PDF
    Thrombus formation in intracranial aneurysms, while sometimes stabilizing lesion growth, can present additional risk of thrombo-embolism. The role of hemodynamics in the progression of aneurysmal disease can be elucidated by patient-specific computational modeling. In our previous work, patient-specific computational fluid dynamics (CFD) models were constructed from MRI data for three patients who had fusiform basilar aneurysms that were thrombus-free and then proceeded to develop intraluminal thrombus. In this study, we investigated the effect of increased flow residence time (RT) by modeling passive scalar advection in the same aneurysmal geometries. Non-Newtonian pulsatile flow simulations were carried out in base-line geometries and a new postprocessing technique, referred to as “virtual ink” and based on the passive scalar distribution maps, was used to visualize the flow and estimate the flow RT. The virtual ink technique clearly depicted regions of flow separation. The flow RT at different locations adjacent to aneurysmal walls was calculated as the time the virtual ink scalar remained above a threshold value. The RT values obtained in different areas were then correlated with the location of intra-aneurysmal thrombus observed at a follow-up MR study. For each patient, the wall shear stress (WSS) distribution was also obtained from CFD simulations and correlated with thrombus location. The correlation analysis determined a significant relationship between regions where CFD predicted either an increased RT or low WSS and the regions where thrombus deposition was observed to occur in vivo. A model including both low WSS and increased RT predicted thrombus-prone regions significantly better than the models with RT or WSS alone

    Prerequisites for a dry powder inhaler for children with cystic fibrosis

    Get PDF
    Correct inhalation technique is essential for effective use of dry powder inhalers (DPIs), as their effectiveness largely depends on the patient's inhalation manoeuvre. Children are an especially challenging target population for DPI development due to the large variability in understanding and inspiratory capacities. We previously performed a study in which we determined the prerequisites for a paediatric DPI in a mostly healthy paediatric population, for which we used an empty test inhaler with variable internal airflow resistance and mouthpiece. In the current study we investigated what specifications are required for a DPI for children with cystic fibrosis (CF), for which we expanded on our previous findings. We recorded flow profiles of 35 children with CF (aged 4.7-14.7 years) at three airflow resistances (0.031-0.045 kPa0.5.min.L-1) from which various inspiratory parameters were computed. Obstructions in the mouth during inhalation were recorded with a sinuscope. All children were able to perform a correct inhalation manoeuvre, although video analysis showed that children did not place the inhaler correctly in the mouth in 17% of the cases. No effect was found of medium to high airflow resistance on total inhaled volume, which implies that the whole resistance range tested is suitable for children with CF aged 4-14 years. No effect could be established of either mouthpiece design or airflow resistance on the occurrence of obstructions in the mouth cavity. This study confirms our previous conclusion that the development of DPIs specifically for children is highly desired. Such a paediatric DPI should function well at 0.5 L inhaled volume and a peak inspiratory flow rate of 20 to 30 L/min, depending on the internal airflow resistance. This resistance can be increased up to 0.045 kPa0.5.min.L-1 (medium-high) to reduce oropharyngeal deposition. A higher resistance may be less favourable due to its compromising effect on PIF and thereby on the energy available for powder dispersion
    corecore