100 research outputs found
A systematic approach to the failed plastic surgical reconstruction of the diabetic foot
Plastic reconstruction for diabetic foot wounds must be approached carefully and follow sound micro-surgical principles as it relates to the anatomy of the designated flap chosen for coverage. First, the surgeon always needs to evaluate the local and general conditions of the presenting pathology and patient, respectively when considering a flap for reconstruction. The flap that is chosen is based on the vascularity, location, and size of the defect. Salvage of the failed flap and revisional reconstructive procedures are very challenging. Often, adjunctive therapies such as hyperbaric oxygen, negative pressure wound therapy, vasodilators, and/or vascular surgery is required. In certain case scenarios, such as patients with poor general health and compromised local vascularity in which revisional flap coverage cannot be performed, the above mentioned adjunctive therapies could be used as a primary treatment to potentially salvage a failing flap
Flexural strength of acrylic resin repairs processed by different methods: water bath, microwave energy and chemical polymerization
Denture fractures are common in daily practice, causing inconvenience to the patient and to the dentists. Denture repairs should have adequate strength, dimensional stability and color match, and should be easily and quickly performed as well as relatively inexpensive. OBJECTIVE: The aim of this study was to evaluate the flexural strength of acrylic resin repairs processed by different methods: warm water-bath, microwave energy, and chemical polymerization. MATERIAL AND METHODS: Sixty rectangular specimens (31x10x2.5 mm) were made with warm water-bath acrylic resin (Lucitone 550) and grouped (15 specimens per group) according to the resin type used to make repair procedure: 1) specimens of warm water-bath resin (Lucitone 550) without repair (control group); 2) specimens of warm water-bath resin repaired with warm water-bath; 3) specimens of warm water-bath resin repaired with microwave resin (Acron MC); 4) specimens of warm water-bath resin repaired with autopolymerized acrylic resin (Simplex). Flexural strength was measured with the three-point bending in a universal testing machine (MTS 810 Material Test System) with load cell of 100 kgf under constant speed of 5 mm/min. Data were analyzed statistically by Kruskal-Wallis test (p<0.05). RESULTS: The control group showed the best result (156.04±1.82 MPa). Significant differences were found among repaired specimens and the results were decreasing as follows: group 3 (43.02±2.25 MPa), group 2 (36.21±1.20 MPa) and group 4 (6.74±0.85 MPa). CONCLUSION: All repaired specimens demonstrated lower flexural strength than the control group. Repairs with autopolymerized acrylic resin showed the lowest flexural strength
Effect of thermal cycling on denture base and autopolymerizing reline resins
OBJECTIVE: This study evaluated the fracture toughness (FT) of denture base and autopolymerizing reline resins, with and without thermocycling (T). MATERIAL AND METHODS: Specimens of each material (denture base acrylic resin - Lucitone 550 - L; autopolymerizing reline resins - Ufi Gel Hard-UH, Tokuyama Rebase II-TR, New Truliner- NT and Kooliner-K), were produced, notched and divided into two groups (n=10): CG (control group of autopolymerizing reline resins and L): FT tests were performed after polymerization; TG (thermocycled group): FT tests were performed after T (5ºC and 55ºC for 5,000 cycles). RESULTS: Results (MPa.m((1/2))) were analyzed by two-way ANOVA and Tukey's test (p=0.05). L exhibited the highest FT mean values in both groups (CG - 2.33; TG - 2.17). For the CG groups, NT showed the highest FT (1.64) among the autopolymerizing reline resins, and K the lowest (1.04). After T, when the autopolymerizing reline resins were compared, a statistically significant difference in FT was found only between the NT (1.46) and TR (1.00). CONCLUSIONS: Thermocycling increased the FT of K and did not influence the FT of L, UH, TR and NT
LIGHT-CURED COMBINATION OBTURATOR PROSTHESIS
This article describes a procedure to make an open partial denture
obturator prosthesis by using a denture base resin and a resilient liner
polymerized by visible light
- …