72 research outputs found
Malignant melanoma and bone resorption
The cellular and humoral mechanisms accounting for osteolysis in skeletal metastases of malignant melanoma are uncertain. Osteoclasts, the specialised multinucleated cells that carry out bone resorption, are derived from monocyte/macrophage precursors. We isolated tumour-associated macrophages (TAMs) from metastatic (lymph node/skin) melanomas and cultured them in the presence and absence of osteoclastogenic cytokines and growth factors. The effect of tumour-derived fibroblasts and melanoma cells on osteoclast formation and resorption was also analysed. Melanoma TAMs (CD14+/CD51−) differentiated into osteoclasts (CD14−/CD51+) in the presence of receptor activator for nuclear factor κB ligand (RANKL) and macrophage-colony stimulating factor. Tumour-associated macrophage-osteoclast differentiation also occurred via a RANKL-independent pathway when TAMs were cultured with tumour necrosis factor-α and interleukin (IL)-1α. RT–PCR showed that fibroblasts isolated from metastatic melanomas expressed RANKL messenger RNA and the conditioned medium of cultured melanoma fibroblasts was found to be capable of inducing osteoclast formation in the absence of RANKL; this effect was inhibited by the addition of osteoprotegerin (OPG). We also found that cultured human SK-Mel-29 melanoma cells produce a soluble factor that induces osteoclast differentiation; this effect was not inhibited by OPG. Our findings indicate that TAMs in metastatic melanomas can differentiate into osteoclasts and that melanoma fibroblasts and melanoma tumour cells can induce osteoclast formation by RANKL-dependent and RANKL-independent mechanisms, respectively
Selective accumulation of ALA-induced PpIX and photodynamic effect in chemically induced hepatocellular carcinoma
浜松医科大学学位論文 医博論第397号(平成17年3月10日
Cellular mechanisms of bone resorption in breast carcinoma
The cellular mechanisms that account for the increase in osteoclast numbers and bone resorption in skeletal breast cancer metastasis are unclear. Osteoclasts are marrow-derived cells which form by fusion of mononuclear phagocyte precursors that circulate in the monocyte fraction. In this study we have determined whether circulating osteoclast precursors are increased in number or have an increased sensitivity to humoral factors for osteoclastogenesis in breast cancer patients with skeletal metastases (± hypercalcaemia) compared to patients with primary breast cancer and age-matched normal controls. Monocytes were isolated and cocultured with UMR 106 osteoblastic cells in the presence of 1,25 dihydroxyvitamin D3[1,25(OH)2D3] and human macrophage colony stimulating factor (M-CSF) on coverslips and dentine slices. Limiting dilution experiments showed that there was no increase in the number of circulating osteoclast precursors in breast cancer patients with skeletal metastases (± hypercalcaemia) compared to controls. Osteoclast precursors in these patients also did not exhibit increased sensitivity to 1,25(OH)2D3 or M-CSF in terms of osteoclast formation. The addition of parathyroid hormone-related protein and interleukin-6 did not increase osteoclast formation. The addition of the supernatant of cultured breast cancer cell lines (MCF-7 and MDA-MB-435), however, significantly increased monocyte-osteoclast formation in a dose-dependent fashion. These results indicate that the increase in osteoclast formation in breast cancer is not due to an increase in the number/nature of circulating osteoclast precursors. They also suggest that tumour cells promote osteoclast formation in the bone microenvironment by secreting soluble osteoclastogenic factor(s). © 2001 Cancer Research Campaign http://www.bjcancer.co
Dendritic Cells/Natural Killer Cross-Talk: A Novel Target for Human Immunodeficiency Virus Type-1 Protease Inhibitors
BACKGROUND:
HIV-1 Protease Inhibitors, namely PIs, originally designed to inhibit HIV-1 aspartic protease, can modulate the immune response by mechanisms largely unknown, and independent from their activity on viral replication. Here, we analyzed the ability of PIs to interfere with differentiation program of monocytes toward dendritic cell (DCs) lineage, a key process in the inflammatory response.
METHODOLOGY/PRINCIPAL FINDINGS:
Monocytes from healthy donors were isolated and induced to differentiate in vitro in the presence or absence of saquinavir, ritonavir, nelfinavir, indinavir or amprenavir (sqv, rtv, nlfv, idv, apv, respectively). These drugs demonstrated a differential ability to sustain the generation of immature DCs (iDCs) with an altered phenotype, including low levels of CD1a, CD86, CD36 and CD209. DCs generated in the presence of rtv also failed to acquire the typical phenotype of mature DCs (mDCs), and secreted lower amounts of IL-12 and IL-15. Accordingly, these aberrant mDCs failed to support activation of autologous Natural Killer (NK) cells, and resulted highly susceptible to NK cell-mediated cytotoxicity.
CONCLUSIONS/SIGNIFICANCE:
Our findings uncover novel functional properties of PIs within the DC-NK cell cross-talk, unveiling the heterogeneous ability of members of this class drugs to drive the generation of atypical monocyte-derived DCs (MDDCs) showing an aberrant phenotype, a failure to respond appropriately to bacterial endotoxin, a weak ability to prime autologous NK cells, and a high susceptibility to NK cell killing. These unexpected properties might contribute to limit inflammation and viral spreading in HIV-1 infected patients under PIs treatment, and open novel therapeutical perspectives for this class drugs as immunomodulators in autoimmunity and cancer
Association of HLA-B*5801 allele and allopurinol-induced stevens johnson syndrome and toxic epidermal necrolysis: a systematic review and meta-analysis
Background: Despite some studies suggesting a possible association between human leukocyte antigen, HLA-B*5801 and allopurinol induced Stevens-Johnson Syndrome (SJS) and Toxic Epidermal Necrolysis (TEN), the evidence of association and its magnitude remain inconclusive. This study aims to systematically review and meta-analyze the association between HLA-B*5801 allele and allopurinol-induced SJS/TEN.Methods: A comprehensive search was performed in databases including MEDLINE, Pre-MEDLINE, Cochrane Library, EMBASE, International Pharmaceutical Abstracts (IPA), CINAHL, PsychInfo, the WHO International, Clinical Trial Registry, and ClinicalTrial.gov from their inceptions to June 2011. Only studies investigating association between HLA-B*5801 with allopurinol-induced SJS/TEN were included. All studies were extracted by two independent authors. The primary analysis was the carrier frequency of HLA-B*5801 comparison between allopurinol-induced SJS/TEN cases and each comparative group. The pooled odds ratios were calculated using a random effect model.Results: A total of 4 studies with 55 SJS/TEN cases and 678 matched-controls (allopurinol-tolerant control) was identified, while 5 studies with 69 SJS/TEN cases and 3378 population-controls (general population) were found. SJS/TEN cases were found to be significantly associated with HLA-B*5801 allele in both groups of studies with matched-control (OR 96.60, 95%CI 24.49-381.00, p < 0.001) and population-control (OR 79.28, 95%CI 41.51-151.35, p < 0.001). Subgroup analysis for Asian and Non-Asian population yielded similar findings.Conclusion: We found a strong and significant association between HLA-B*5801 and allopurinol-induced SJS/TEN. Therefore, HLA-B*5801 allele screening may be considered in patients who will be treated with allopurinol
Soluble CD4 and CD4-Mimetic Compounds Inhibit HIV-1 Infection by Induction of a Short-Lived Activated State
Binding to the CD4 receptor induces conformational changes in the human immunodeficiency virus (HIV-1) gp120 exterior envelope glycoprotein. These changes allow gp120 to bind the coreceptor, either CCR5 or CXCR4, and prime the gp41 transmembrane envelope glycoprotein to mediate virus–cell membrane fusion and virus entry. Soluble forms of CD4 (sCD4) and small-molecule CD4 mimics (here exemplified by JRC-II-191) also induce these conformational changes in the HIV-1 envelope glycoproteins, but typically inhibit HIV-1 entry into CD4-expressing cells. To investigate the mechanism of inhibition, we monitored at high temporal resolution inhibitor-induced changes in the conformation and functional competence of the HIV-1 envelope glycoproteins that immediately follow engagement of the soluble CD4 mimics. Both sCD4 and JRC-II-191 efficiently activated the envelope glycoproteins to mediate infection of cells lacking CD4, in a manner dependent on coreceptor affinity and density. This activated state, however, was transient and was followed by spontaneous and apparently irreversible changes of conformation and by loss of functional competence. The longevity of the activated intermediate depended on temperature and the particular HIV-1 strain, but was indistinguishable for sCD4 and JRC-II-191; by contrast, the activated intermediate induced by cell-surface CD4 was relatively long-lived. The inactivating effects of these activation-based inhibitors predominantly affected cell-free virus, whereas virus that was prebound to the target cell surface was mainly activated, infecting the cells even at high concentrations of the CD4 analogue. These results demonstrate the ability of soluble CD4 mimics to inactivate HIV-1 by prematurely triggering active but transient intermediate states of the envelope glycoproteins. This novel strategy for inhibition may be generally applicable to high–potential-energy viral entry machines that are normally activated by receptor binding
- …