40 research outputs found

    Self-assembly and electron-beam-induced direct etching of suspended graphene nanostructures

    Full text link
    We report on suspended single-layer graphene deposition by a transfer-printing approach based on polydimethylsiloxane stamps. The transfer printing method allows the exfoliation of graphite flakes from a bulk graphite sample and their residue-free deposition on a silicon dioxide substrate. This deposition system creates a blistered graphene surface due to strain induced by the transfer process itself. Single-layer-graphene deposition and its "blistering" on the substrate are demonstrated by a combination of Raman spectroscopy, scanning electron microscopy and atomic-force microscopy measurements. Finally, we demonstrate that blister-like suspended graphene are self-supporting single-layer structures and can be flattened by employing a spatially-resolved direct-lithography technique based on electron-beam induced etching.Comment: 17 pages, 5 figure

    Stretching graphene using polymeric micro-muscles

    Full text link
    The control of strain in two-dimensional materials opens exciting perspectives for the engineering of their electronic properties. While this expectation has been validated by artificial-lattice studies, it remains elusive in the case of atomic lattices. Remarkable results were obtained on nanobubbles and nano-wrinkles, or using scanning probes; microscale strain devices were implemented exploiting deformable substrates or external loads. These devices lack, however, the flexibility required to fully control and investigate arbitrary strain profiles. Here, we demonstrate a novel approach making it possible to induce strain in graphene using polymeric micrometric artificial muscles (MAMs) that contract in a controllable and reversible way under an electronic stimulus. Our method exploits the mechanical response of poly-methyl-methacrylate (PMMA) to electron-beam irradiation. Inhomogeneous anisotropic strain and out-of-plane deformation are demonstrated and studied by Raman, scanning-electron and atomic-force microscopy. These can all be easily combined with the present device architecture. The flexibility of the present method opens new opportunities for the investigation of strain and nanomechanics in two-dimensional materials

    Disclosing the composition of the Renaissance thin uniface metallic strikings by Alessandro Cesati (mid-16th century) from the Bargello Museum using non-invasive analyses

    Get PDF
    This study focuses on a series of thin uniface strikings preserved in the Bargello Museum (Florence, Italy), analysed using non-destructive and non-invasive techniques. These specimens were created in Rome by Italo-Greek sixteenth-century goldsmith and medalist Alessandro Cesati, called ‘Grechetto’, for Pope Paul III (1534–1549 A.D.) and Pope Julius III (1550–1555 A.D.). The samples were studied to explore the chemical composition and the surface morphology of the alloy since they are characterized by thin metal uniface strikings, representing a truly unique case study. New information about production technique, alloy composition, and on the use of these foils as prototypes by the artist are gained thanks to the analysis of such exemplars. A scanning electron microscope with an energy dispersive system (SEM-EDS) shows that the pieces are characterized by a surface enriched in Ag (up to 48 wt%) and/or Au (up to 6.3 wt%), whereas the back side shows an Sn-Pb alloy. In this specimen, Sn reaches 59.9 wt%, and Pb is up to 64.3 wt%, displaying a typical microstructure of Pb islands dispersed in an Sn matrix. Moreover, the absence of a preferential orientation of such lead clusters implies that the medal was subjected to very soft mechanical processing, such as hammering. FTIR analysis detected the use of a resin to glue the foils onto a different substrate, suggesting that Cesati also used these strikings to produce medallic prototypes to send to friends and patrons outside Rome

    Reflectionless tunneling in planar Nb/GaAs hybrid junctions

    Full text link
    Reflectionless-tunneling was observed in Nb/GaAs superconductor/semiconductor junctions fabricated through a two-step procedure. First, periodic δ\delta-doped layers were grown by molecular beam epitaxy near the GaAs surface, followed by an As cap layer to protect the surface during {\it ex-situ} transfer. Second, Nb was deposited by dc-magnetron sputtering onto the GaAs(001) 2 ×\times 4 surface {\it in-situ} after thermal desorption of the cap layer. The magnetotransport behavior of the resulting hybrid junctions was successfully analyzed within the random matrix theory of phase-coherent Andreev transport. The impact of junction morphology on reflectionless tunneling and the applicability of the fabrication technique to the realization of complex superconductor/semiconductor mesoscopic systems are discussed.Comment: 10 pages, 3 figures, to be published in Appl. Phys. Let

    Electrostatic force microscopy and potentiometry of realistic nanostructured systems

    Full text link
    We investigate the dependency of electrostatic interaction forces on applied potentials in Electrostatic Force Microscopy (EFM) as well as in related local potentiometry techniques like Kelvin Probe Microscopy (KPM). The approximated expression of electrostatic interaction between two conductors, usually employed in EFM and KPM, may loose its validity when probe-sample distance is not very small, as often realized when realistic nanostructured systems with complex topography are investigated. In such conditions, electrostatic interaction does not depend solely on the potential difference between probe and sample, but instead it may depend on the bias applied to each conductor. For instance, electrostatic force can change from repulsive to attractive for certain ranges of applied potentials and probe-sample distances, and this fact cannot be accounted for by approximated models. We propose a general capacitance model, even applicable to more than two conductors, considering values of potentials applied to each of the conductors to determine the resulting forces and force gradients, being able to account for the above phenomenon as well as to describe interactions at larger distances. Results from numerical simulations and experiments on metal stripe electrodes and semiconductor nanowires supporting such scenario in typical regimes of EFM investigations are presented, evidencing the importance of a more rigorous modelling for EFM data interpretation. Furthermore, physical meaning of Kelvin potential as used in KPM applications can also be clarified by means of the reported formalism.Comment: 20 pages, 7 figures, 1 tabl

    Revealing the atomic structure of the buffer layer between SiC(0001) and epitaxial graphene

    Full text link
    On the SiC(0001) surface (the silicon face of SiC), epitaxial graphene is obtained by sublimation of Si from the substrate. The graphene film is separated from the bulk by a carbon-rich interface layer (hereafter called the buffer layer) which in part covalently binds to the substrate. Its structural and electronic properties are currently under debate. In the present work we report scanning tunneling microscopy (STM) studies of the buffer layer and of quasi-free-standing monolayer graphene (QFMLG) that is obtained by decoupling the buffer layer from the SiC(0001) substrate by means of hydrogen intercalation. Atomic resolution STM images of the buffer layer reveal that, within the periodic structural corrugation of this interfacial layer, the arrangement of atoms is topologically identical to that of graphene. After hydrogen intercalation, we show that the resulting QFMLG is relieved from the periodic corrugation and presents no detectable defect sites

    Little-Parks effect in single YBaCuO sub-micron rings

    Full text link
    The properties of single submicron high-temperature superconductor (HTS) rings are investigated. The Little-Parks effect is observed and is accompanied by an anomalous behavior of the magnetic dependence of the resistance, which we ascribe to non-uniform vorticity (superfluid angular momentum) within the ring arms. This effect is linked to the peculiar HTS-relationship between the values of the coherence length and the London penetration depth.Comment: 14 pages, 3 figure
    corecore