46 research outputs found
Space-resolved dynamic light scattering within a millimetric drop: from Brownian diffusion to the swelling of hydrogel beads
We present a novel dynamic light scattering setup to probe, with time and
space resolution, the microscopic dynamics of soft matter systems confined
within millimeter-sized spherical drops. By using an ad-hoc optical layout, we
tackle the challenges raised by refraction effects due to the unconventional
shape of the samples. We first validate the setup by investigating the dynamics
of a suspension of Brownian particles. The dynamics measured at different
positions in the drop, and hence different scattering angles, are found to be
in excellent agreement with those obtained for the same sample in a
conventional light scattering setup. We then demonstrate the setup capabilities
by investigating a bead made of a polymer hydrogel undergoing swelling. The gel
microscopic dynamics exhibit a space dependence that strongly varies with time
elapsed since the beginning of swelling. Initially, the dynamics in the
periphery of the bead are much faster than in the core, indicative of
non-uniform swelling. As the swelling proceeds, the dynamics slow down and
become more spatially homogeneous. By comparing the experimental results to
numerical and analytical calculations for the dynamics of a homogeneous, purely
elastic sphere undergoing swelling, we establish that the mean square
displacement of the gel strands deviates from the affine motion inferred from
the macroscopic deformation, evolving from fast diffusive-like dynamics at the
onset of swelling to slower, yet supradiffusive, rearrangements at later
stages
The shape of hanging elastic cylinders
International audienceDeformations of heavy elastic cylinders with their axis in the direction of earth's gravity field are investigated. The specimens, made of polyacrylamide hydrogels, are attached from their top circular cross section to a rigid plate. An equilibrium configuration results from the interplay between gravity that tends to deform the cylinders downwards under their own weight, and elasticity that resists these distortions. The corresponding steady state exhibits fascinating shapes which are measured with lab-based micro-tomography. For any given initial radius to height ratio, the deformed cylinders are no longer axially symmetric beyond a critical value of a control parameter that depends on the volume force, the height and the elastic modulus: self-similar wrinkling hierarchies develop, and dimples appear at the bottom surface of the shallowest samples. We show that these patterns are the consequences of elastic instabilities
Microemulsion nanocomposites: phase diagram, rheology and structure using a combined small angle neutron scattering and reverse Monte Carlo approach
The effect of silica nanoparticles on transient microemulsion networks made
of microemulsion droplets and telechelic copolymer molecules in water is
studied, as a function of droplet size and concentration, amount of copolymer,
and nanoparticle volume fraction. The phase diagram is found to be affected,
and in particular the percolation threshold characterized by rheology is
shifted upon addition of nanoparticles, suggesting participation of the
particles in the network. This leads to a peculiar reinforcement behaviour of
such microemulsion nanocomposites, the silica influencing both the modulus and
the relaxation time. The reinforcement is modelled based on nanoparticles
connected to the network via droplet adsorption. Contrast-variation Small Angle
Neutron Scattering coupled to a reverse Monte Carlo approach is used to analyse
the microstructure. The rather surprising intensity curves are shown to be in
good agreement with the adsorption of droplets on the nanoparticle surface
Biaxial extensional viscous dissipation in sheets expansion formed by impact of drops of Newtonian and non-Newtonian fluids
We investigate freely expanding liquid sheets made of either simple Newtonian
fluids or solutions of high molecular water-soluble polymer chains. A sheet is
produced by the impact of a drop on a quartz plate covered with a thin layer of
liquid nitrogen that suppresses shear viscous dissipation thanks to an inverse
Leidenfrost effect. The sheet expands radially until reaching a maximum
diameter and subsequently recedes. Experiments indicate the presence of two
expansion regimes: the capillary regime, where the maximum expansion is
controlled by surface tension forces and does not depend on the viscosity, and
the viscous regime, where the expansion is reduced with increasing viscosity.
In the viscous regime, the sheet expansion for polymeric samples is strongly
enhanced as compared to that of Newtonian samples with comparable zero-shear
viscosity. We show that data for Newtonian and non-Newtonian fluids collapse on
a unique master curve where the maximum expansion factor is plotted against the
relevant effective biaxial extensional Ohnesorge number that depends on fluid
density, surface tension and the biaxial extensional viscosity. For Newtonian
fluids, this biaxial extensional viscosity is six times the shear viscosity. By
contrast, for the non- Newtonian fluids, a characteristic Weissenberg
number-dependent biaxial extensional viscosity is identified, which is in
quantitative agreement with experimental and theoretical results reported in
the literature for biaxial extensional flows of polymeric liquids.Comment: 10 pages, 9 figures, accepted for publication in Phys. Rev. Fluid
Conception et réalisation d'un micro-injecteur matriciel pour la fonctionnalisation des biopuces
The aim of this thesis has been to design and fabricate a matrix of ejectors for in-situ synthesis of oligonucleotides on DNA chip. The approach we propose consists using a matrix of ejectors in order to deposit locally droplets of nucleotides on hybridization cells and to synthesize the required oligonucleotide sequences step by step in parallel. The difficulty of this technique lies on the ability of the micro injector head to eject from any ejector independently from each other. The advantages of the method we propose are the low cost and high flexibility of equipment, and the high density of hybridization units that can be fonctionnalised using this approach. Different actuation principles existing in ejection field have been investigated and finally, the thermal actuation has been chosen. This injection working principle is based on the thermal ink jet printing technique. A heater resistor, in close contact with the liquid to be ejected, generates the nucleation of a gas bubble in the fluid. When the pulse current goes through the heater with a sufficient during and power, the bubble growths until to eject a small droplet through the nozzles of the injectors. The particularity of the matrix of ejectors that we have designed, resides in the ability to actuate any ejector independently without thermal interactions between neighboured heaters. With these considerations, simulations have been realized with FEM simulation under ConventorWare software. The final design integrates on a thin dielectric and stress free membrane, polysilicon heater resistors, and SU8 photopolymerised nozzles. The first characterisations of the devices have shown that ejection occurs with pulse durations and tension intensity from 50µs (25V) to 50ms (5V) and that the ejected volume ranges from 0.1pl to 3nl.Cette thèse porte sur la conception et la réalisation d'un microsystème d'éjection matriciel pour la fonctionnalisation in-situ des puces à ADN. L'objectif est de concevoir et réaliser un système flexible, peu onéreux et performant permettant le dépôt localisé de micro-gouttes de réactifs (nucléotides en solution dans l'acétonitrile en l'occurrence) sur la surface de la biopuce afin de synthétiser les séquences d'oligonucléotides in-situ. Les avantages d'un tel système sont le faible coût de l'équipement, une grande flexibilité dans le choix des séquences synthétisées et la possibilité de réaliser des puces à fortes densités d'unités d'hybridation. Après examen des différentes possibilités d'actionnement, l'éjection par actionnement thermique a été retenue. Le principe s'inspire du jet d'encre thermique mais la difficulté essentielle vient du fait que les éjecteurs sont disposés de façon matricielle avec une très grande densité et doivent être commandables individuellement les uns des autres. La conception du micro-injecteur passe par la compréhension du mécanisme d'éjection et nous a amené à traiter des aspects théoriques de l'ébullition et de l'éjection. Une première structure a été conçue et réalisée, devant répondre au cahier des charges imposé par l'application ainsi qu'à l'impératif d'une bonne reproductibilité de l'éjection. A ces fins, différentes simulations par des méthodes à éléments finis ont été effectuées à partir du logiciel CoventorWare. La structure retenue intègre des résistances chauffantes sur une fine membrane diélectrique et les buses d'éjection sont réalisées en résine photosensible SU8. Les propriétés du dispositifs permettent d'atteindre localement des températures suffisamment importantes pour provoquer la nucléation homogène des bulles gazeuses tout en confinant la chaleur générée autour d'une buse d'éjection, sans interaction thermique avec les voisines. Les éjecteurs réalisés ont été caractérisés et il a ainsi été montré que des g outtel ettes de 0,1pl à 3nl pouvaient être éjectées lorsque la tension d'alimentation varie entre 25V et 5V et l'impulsion électrique d'alimentation durait de 50µs à 50ms
Conception et réalisation d'un micro-injecteur matriciel pour la fonctionalisation des biopuces
TOULOUSE3-BU Sciences (315552104) / SudocSudocFranceF
SWNT/SDS aqueous dispersions as photoluminescent nanothermometers
International audienceTemperature is one of the basic parameters often required to characterize a system. A great demand has arisen for localmeasurements, especially in liquids or complex biological environments. Various approaches have been proposed to study thetemperature at the nano-scale level. Some of them are based on the spectroscopic properties of carbon nanotubes (CNT) usedas sensors. Raman spectroscopy is indeed a powerful technique to identify single-walled carbon nanotubes (SWNT) and to study theirstructure, defects and electronic properties through the measurement of specific Raman signatures (RBM, D, G and 2D bands).On the other hand, individual SWNT or small bundles emit light in the near infrared and the photoluminescence (PL) spectra isvery sensitive to the quality of the dispersion and the dielectric environment of the nanotubes. In particular, when SWNT aredispersed in aqueous solutions, the PL energies are sensitive to the nature of the surfactants or polymers, to theirconcentration, and to the way they adsorb on/wrap around the nanotubes. In this work we show that the PL/Raman spectra of SWNT dispersed with sodium dodecyl sulfate (SDS) is very sensitive to thetemperature (figure 1) in a large range of SDS concentrations. We discuss the influence of the chiral angle of the SWNT onthese PL changes, and the origin of the changes in terms of SDS reorganization at the surface of the nanotubes. Similarchanges are obtained with increasing laser power (figure 2), showing the local heating of the nanotubes. These results pavethe way for the development of SWNT-based nano-thermometers