2,458 research outputs found

    Plasma Nitriding of 90CrMoV8 Tool Steel for the Enhancement of Hardness and Corrosion Resistance

    Get PDF
    The aim of the study is to apply a plasma nitriding process to the 90CrMoV8 steel commonly employed in wood machining, and to determine its efficiency to improve both mechanical and electrochemical properties of the surface. Treatments were performed at a constant N2:H2 gas mixture and by varying the temperature and process duration. The structural and morphological properties of nitrided layers were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) coupled with EDS microanalyses. Surface hardening and hardness profiles were evaluated by micro hardness measurements. To simulate the woodmachining conditions, electrochemical tests were carried out with an oak wood electrolyte with the purpose of understanding the effects of the nitriding treatment on the corrosion resistance of the tool in operation. X-ray diffraction analyses revealed the presence of both γ′ (Fe4N) and ε (Fe2–3N) nitrides with a predominance of the ε phase. Moreover, α-Fe (110), γ′ and ε diffraction peaks were shifted to lower angles suggesting the development of compressive stresses in the post nitrided steel. As a result, it was shown that nitriding allowed a significant hardening of steel with hardness values higher than 1200 HV. The diffusion layers were always composed of an outer compound layer and a hardened bulk layer which thickness was half of the total diffusion layer one.No white layer was observed. Similarly, no traces of chromium nitrides were detected. The temperature seemed to be a parameter more influent than the process duration on the morphological properties of the nitrided layer, while it had no real influence on their crystallinity. Finally, the optimal nitriding conditions to obtain a thick and hard diffusion layer are 500 °C for 10 h. On the other hand, to verify the effect of these parameters on the corrosion resistance, potentiodynamic polarization tests were carried out in an original “wood juice” electrolyte. After corrosion, surface was then observed at the SEM scale. Electrochemical study indicated that the untreated steel behaved as a passive material. Although the very noble character of steel was somewhat mitigated and the corrosion propensity increased for nitrided steels, the passive-like nature of themodified surfacewas preserved. For the same optimized parameters as those deduced from the mechanical characterization (500 °C, 10 h), surface presented, in addition to a huge surface hardening, a high corrosion resistance.Regional Council of Burgundy and EGID

    Dimerization of ion radicals in ionic liquids. An example of favourable "Coulombic" solvation.

    No full text
    International audienceThe irreversible dimerization of the acetophenone radical anion, chosen as an example of a carbon-carbon coupling reaction between two charged species, was investigated in a series of 1,3-dialkylimidazolium and 1,2,3-trialkylimidazolium ionic liquids. Indeed, such ion dimerizations which display slow kinetics despite small activation energies, are controlled by a subtle competition between bond formation, Coulombic repulsion and solvation. The effects of viscosity, "polarity" and ionic solvation on the reactivity of the radical anions were examined. The dimerization rate constants were demonstrated to be only weakly affected by the high viscosity of the medium or its apparent polarity. When the acetophenone radical anion is "solvated" in imidazolium-based ionic liquids, a strong interaction between the negatively-charged intermediates and the imidazolium cation occurs. The ensuing charge stabilization allows a fast dimerization step in all the ionic liquids used. The kinetic effect is even enhanced in the 1,3-dialkylimidazolium salts as compared to the 1,2,3-trialkylimidazolium ones because the interaction between the radical anions and the 1,3-dialkylimidazolium cations are stronger, probably due to the formation of H-bond. The reactivity of the ion radical is demonstrated not only to be mainly dominated by electrostatic interactions, but also that the nature of the ionic liquid cations with respect to that of the ion radical is a major factor that affects the reaction kinetics

    Un SIG pour analyser les stratégies de mise en valeur du milieu par des éleveurs de moutons

    Get PDF
    Une base de données géographique «Milieu naturel - pratiques d’élevage» a été mise en place sur un secteur de l’arrière-pays méditerranéen, le Lodévois (Hérault)

    Changes in the physical structure and chain dynamics of elastin network in homocysteine-cultured arteries

    Get PDF
    The thermal and dielectric properties of the elastin network were investigated in arteries cultured with physiological and pathological concentrations of homocysteine, an aminoacid responsible of histological impairments in human arteries. The physical structure of this amorphous protein was investigated by differential scanning calorimetry (DSC). To explore the molecular dynamics of the elastin network in the nanometer range, we used thermally stimulated currents (TSC), a dielectric technique running at low frequency, and measuring the dipolar reorientations in proteins subjected to a static electrical field. Combining DSC and TSC experiments reveals the molecular mobility of the proteins, both in the glassy state and in the liquid state. Significant differences are evidenced in the physical structure and relaxation behavior of elastin network in cultured arteries (physiological and pathological concentrations of homocysteine) and discussed

    Influence of homocysteine on the physical structure and molecular mobility of elastin network in cultured arteries

    Get PDF
    The thermal and dielectric properties of the elastin network were investigated in arteries cultured with physiological and pathological concentrations of homocysteine, an aminoacid responsible of histological impairments in human arteries. The glass transition of this amorphous protein was investigated by Differential Scanning Calorimetry (DSC). To explore the molecular dynamics of the elastin network in the nanometer range, we used Thermally Stimulated Currents (TSC), a dielectric technique running at low frequency and measuring the dipolar reorientations in proteins subjected to a static electrical field. Combining TSC and DSC experiments with determination of the activation parameters of relaxation times reveals the molecular mobility of the proteins. The major differences in the relaxation behavior of elastin between arteries cultured with physiological and pathological concentrations of homocysteine are discussed

    Vergence tracking: a tool to assess oculomotor performance in stereoscopic displays

    Get PDF
    Oculomotor conflict induced between the accommodative and vergence components in stereoscopic displays represents an unnatural viewing condition. There is now some evidence that stereoscopic viewing may induce discomfort and changes in oculomotor parameters. The present study sought to measure oculomotor performance during stereoscopic viewing. Using a 3D stereo setup and an eye-tracker, vergence responses were measured during 20-min exposure to a virtual visual target oscillating in depth, which participants had to track. The results showed a significant decline in the amplitude of the in-depth oscillatory vergence response over time. We propose that eye-tracking provides a useful tool to objectively assess the timevarying alterations of the vergence system when using stereoscopic displays

    Simulation d’une filtration liquide en canal poreux fermé à une extrémité avec prise en compte de la formation du dépôt

    Get PDF
    La formation d’un dépôt de filtration ainsi que les performances de filtration associées ont été étudiées par CFD en utilisant un maillage mobile. Des lois expérimentales décrivant la porosité et la perméabilité du dépôt ont été intégrées au modèle. Ces lois ont été obtenues à partir de la mesure d’épaisseur de dépôt in situ par nappe laser. L’effet d’une perméabilité membranaire non uniforme sur la distribution spatiale du dépôt a ensuite été étudié

    Effect of duplex treatments by plasma nitriding and triode sputtering on corrosion behaviour of 32CDV13 low alloy steel

    Get PDF
    This paper presents corrosion behaviour of duplex treated low alloy steel. Different kinds of samples were tested: non-treated, plasma nitrided, ZrBN-triode sputtered and ZrBN-duplex treated samples. The corrosion behaviour was evaluated by electrochemical techniques (corrosion potential and polarisation resistance evolutions versus immersion time, potentiodynamic curves). The corrosion tests were carried out in neutral aqueous saline solution (NaCl 30 g L−1), naturally aerated. The composition and the structure of layers were determined by EDS and XRD, respectively, while the morphology was observed by SEM. Experimental results showed that the corrosion current density Icorr increased with decreasing white layer thickness in plasma nitrided specimens. The nitrides ε-Fe2 − 3N and γ′-Fe4N present in the white layer are nobler than the substrate but may promote, by galvanic effect, a localised corrosion through open porosity. The duplex treated specimens (nitriding+ZrBN coating) present better corrosion protection and enable to overcome the drawbacks of both techniques, mainly the porosity of the deposited films
    corecore