10,915 research outputs found

    Exact statistical properties of the Burgers equation

    Full text link
    The one dimensional Burgers equation in the inviscid limit with white noise initial condition is revisited. The one- and two-point distributions of the Burgers field as well as the related distributions of shocks are obtained in closed analytical forms. In particular, the large distance behavior of spatial correlations of the field is determined. Since higher order distributions factorize in terms of the one and two points functions, our analysis provides an explicit and complete statistical description of this problem.Comment: 21 pages, 6 figures include

    Symmetry-preserving Observers

    Full text link
    This paper presents three non-linear observers on three examples of engineering interest: a chemical reactor, a non-holonomic car, and an inertial navigation system. For each example, the design is based on physical symmetries. This motivates the theoretical development of invariant observers, i.e, symmetry-preserving observers. We consider an observer to consist in a copy of the system equation and a correction term, and we give a constructive method (based on the Cartan moving-frame method) to find all the symmetry-preserving correction terms. They rely on an invariant frame (a classical notion) and on an invariant output-error, a less standard notion precisely defined here. For each example, the convergence analysis relies also on symmetries consideration with a key use of invariant state-errors. For the non-holonomic car and the inertial navigation system, the invariant state-errors are shown to obey an autonomous differential equation independent of the system trajectory. This allows us to prove convergence, with almost global stability for the non-holonomic car and with semi-global stability for the inertial navigation system. Simulations including noise and bias show the practical interest of such invariant asymptotic observers for the inertial navigation system.Comment: To be published in IEEE Automatic Contro

    The Casimir Effect

    Get PDF
    After a review of the standard calculation of the Casimir force between two metallic plates at zero and non-zero temperatures, we present the study of microscopic models to determine the large-distance asymptotic force in the high-temperature regime. Casimir's conducting plates are modelized by plasmas of interacting charges at temperature T. The charges are either classical, or quantum-mechanical and coupled to a (classical) radiation field. In these models, the force obtained is twice weaker than that arising from standard treatments neglecting the microscopic charge fluctutations inside the bodies. The enforcement of inert boundary conditions on the field in the usual calculations turns out to be inadequate in this regime. Other aspects of dispersion forces are also reviewed. The status of (non-retarded) van der Waals-London forces in a dilute medium of non-zero temperature and density is investigated. In a proper scaling regime called the atomic limit (high dilution and low temperature), one is able to give the exact large-distance atomic correlations up to exponentially small terms as T->0. Retarded van der Waals forces and forces between dielectric bodies are also reviewed. Finally, the Casimir effect in critical phenomena is addressed by considering the free Bose gas. It is shown that the grand-canonical potential of the gas in a slab at the critical value of the chemical potential has finite size corrections of the standard Casimir type. They can be attributed to the existence of long-range order generated by gapless excitations in the phase with broken continuous symmetry.Comment: Lecture notes prepared for the proceedings of the 1st Warsaw School of Statistical Physics, Kazimierz, Poland, June 2005. To appear in Acta Physica Polonica (2006). 52 pages, 0 figures. Available at http://th-www.if.uj.edu.pl/acta/vol37/pdf/v37p2503.pd

    Quintessence Model Building

    Get PDF
    A short review of some of the aspects of quintessence model building is presented. We emphasize the role of tracking models and their possible supersymmetric origin.Comment: 14 pages, to appear in the proceedings of the sixth workshop of the American University of Pari

    Bose-Einstein Condensation: A MathematicallyUnsolved Problem

    Get PDF
    The interacting Bose gas with repulsive potential is considered in the polymer representation and some of the yet unsolved mathematical questions for establishing the existence of Bose condensation in this setting are discusse
    corecore