3,317 research outputs found

    Two-neutron knockout from neutron-deficient 34^{34}Ar, 30^{30}S, and 26^{26}Si

    Get PDF
    Two-neutron knockout reactions from nuclei in the proximity of the proton dripline have been studied using intermediate-energy beams of neutron-deficient 34^{34}Ar, 30^{30}S, and 26^{26}Si. The inclusive cross sections, and also the partial cross sections for the population of individual bound final states of the 32^{32}Ar, 28^{28}S and 24^{24}Si knockout residues, have been determined using the combination of particle and γ\gamma-ray spectroscopy. Similar to the two-proton knockout mechanism on the neutron-rich side of the nuclear chart, these two-neutron removal reactions from already neutron-deficient nuclei are also shown to be consistent with a direct reaction mechanism.Comment: Phys. Rev. C, rapid communication, in pres

    Post-translational insertion of boron in proteins to probe and modulate function

    Get PDF
    Boron is absent in proteins, yet is a micronutrient. It possesses unique bonding that could expand biological function including modes of Lewis acidity not available to typical elements of life. Here we show that post-translational Cβ–Bγ bond formation provides mild, direct, site-selective access to the minimally sized residue boronoalanine (Bal) in proteins. Precise anchoring of boron within complex biomolecular systems allows dative bond-mediated, site-dependent protein Lewis acid–base-pairing (LABP) by Bal. Dynamic protein-LABP creates tunable inter- and intramolecular ligand–host interactions, while reactive protein-LABP reveals reactively accessible sites through migratory boron-to-oxygen Cβ–Oγ covalent bond formation. These modes of dative bonding can also generate de novo function, such as control of thermo- and proteolytic stability in a target protein, or observation of transient structural features via chemical exchange. These results indicate that controlled insertion of boron facilitates stability modulation, structure determination, de novo binding activities and redox-responsive ‘mutation’

    Post-translational insertion of boron in proteins to probe and modulate function

    Get PDF
    Boron is absent in proteins, yet is a micronutrient. It possesses unique bonding that could expand biological function including modes of Lewis acidity not available to typical elements of life. Here we show that post-translational Cβ–Bγ bond formation provides mild, direct, site-selective access to the minimally sized residue boronoalanine (Bal) in proteins. Precise anchoring of boron within complex biomolecular systems allows dative bond-mediated, site-dependent protein Lewis acid–base-pairing (LABP) by Bal. Dynamic protein-LABP creates tunable inter- and intramolecular ligand–host interactions, while reactive protein-LABP reveals reactively accessible sites through migratory boron-to-oxygen Cβ–Oγ covalent bond formation. These modes of dative bonding can also generate de novo function, such as control of thermo- and proteolytic stability in a target protein, or observation of transient structural features via chemical exchange. These results indicate that controlled insertion of boron facilitates stability modulation, structure determination, de novo binding activities and redox-responsive ‘mutation’

    How many crowdsourced workers should a requester hire?

    Get PDF
    Recent years have seen an increased interest in crowdsourcing as a way of obtaining information from a potentially large group of workers at a reduced cost. The crowdsourcing process, as we consider in this paper, is as follows: a requester hires a number of workers to work on a set of similar tasks. After completing the tasks, each worker reports back outputs. The requester then aggregates the reported outputs to obtain aggregate outputs. A crucial question that arises during this process is: how many crowd workers should a requester hire? In this paper, we investigate from an empirical perspective the optimal number of workers a requester should hire when crowdsourcing tasks, with a particular focus on the crowdsourcing platform Amazon Mechanical Turk. Specifically, we report the results of three studies involving different tasks and payment schemes. We find that both the expected error in the aggregate outputs as well as the risk of a poor combination of workers decrease as the number of workers increases. Surprisingly, we find that the optimal number of workers a requester should hire for each task is around 10 to 11, no matter the underlying task and payment scheme. To derive such a result, we employ a principled analysis based on bootstrapping and segmented linear regression. Besides the above result, we also find that overall top-performing workers are more consistent across multiple tasks than other workers. Our results thus contribute to a better understanding of, and provide new insights into, how to design more effective crowdsourcing processes

    Diurnal changes in seawater carbonate chemistry speciation at increasing atmospheric carbon dioxide

    Get PDF
    Natural variability in seawater pH and associated carbonate chemistry parameters is in part driven by biological activities such as photosynthesis and respiration. The amplitude of these variations is expected to increase with increasing seawater carbon dioxide (CO2) concentrations in the future, because of simultaneously decreasing buffer capacity. Here, we address this experimentally during a diurnal cycle in a mesocosm CO2 perturbation study. We show that for about the same amount of dissolved inorganic carbon (DIC) utilized in net community production diel variability in proton (H+) and CO2 concentrations was almost three times higher at CO2 levels of about 675 ± 65 in comparison with levels of 310 ± 30 μatm. With a simple model, adequately simulating our measurements, we visualize carbonate chemistry variability expected for different oceanic regions with relatively low or high net community production. Since enhanced diurnal variability in CO2 and proton concentration may require stronger cellular regulation in phytoplankton to maintain respective gradients, the ability to adjust may differ between communities adapted to low in comparison with high natural variability

    Threshold effect of foreign direct investment on environmental degradation

    Get PDF
    The aim of this paper is to investigate the threshold effect of foreign direct investment (FDI) on environmental degradation. In empirical analysis, FDI and environmental degradation are jointly determined under the given threshold variable and other exogenous variables. Using carbon dioxide (CO2) emissions per capita as a proxy for environmental degradation, the results show that increasing FDI worsens CO2 emissions after a threshold level of corruption has been reached. Our results demonstrate that increasing FDI will increase CO2 emissions when the degree of corruptibility is relatively high. The study suggests that further FDI and improved environmental quality are competing rather than compatible objectives in high-corruption countries and are compatible rather than competing objectives in low-corruption countries. Higher trade liberalization in low-corruption countries could contribute to negative environmental consequences because of the increased output or economic activity which results from increased trade. The robustness estimation confirms the evidence that pollution and economic development increase together up to a certain income level, after which the trend reverses.info:eu-repo/semantics/publishedVersio
    corecore