1,795 research outputs found
Comment on ``Intermittent Synchronization in a Pair of Coupled Chaotic Pendula"
The main aim of this comment is to emphasize that the conditional Lyapunov
exponents play an important role in distinguishing between intermittent and
persistent synchronization, when the analytic criteria for asymptotic stability
are not uniformly obeyed.Comment: 2 pages, RevTeX 4, 1 EPS figur
Symmetries, Cluster Synchronization, and Isolated Desynchronization in Complex Networks
Synchronization is of central importance in power distribution,
telecommunication, neuronal, and biological networks. Many networks are
observed to produce patterns of synchronized clusters, but it has been
difficult to predict these clusters or understand the conditions under which
they form, except for in the simplest of networks. In this article, we shed
light on the intimate connection between network symmetry and cluster
synchronization. We introduce general techniques that use network symmetries to
reveal the patterns of synchronized clusters and determine the conditions under
which they persist. The connection between symmetry and cluster synchronization
is experimentally explored using an electro-optic network. We experimentally
observe and theoretically predict a surprising phenomenon in which some
clusters lose synchrony while leaving others synchronized. The results could
guide the design of new power grid systems or lead to new understanding of the
dynamical behavior of networks ranging from neural to social
Complete Characterization of Stability of Cluster Synchronization in Complex Dynamical Networks
Synchronization is an important and prevalent phenomenon in natural and
engineered systems. In many dynamical networks, the coupling is balanced or
adjusted in order to admit global synchronization, a condition called Laplacian
coupling. Many networks exhibit incomplete synchronization, where two or more
clusters of synchronization persist, and computational group theory has
recently proved to be valuable in discovering these cluster states based upon
the topology of the network. In the important case of Laplacian coupling,
additional synchronization patterns can exist that would not be predicted from
the group theory analysis alone. The understanding of how and when clusters
form, merge, and persist is essential for understanding collective dynamics,
synchronization, and failure mechanisms of complex networks such as electric
power grids, distributed control networks, and autonomous swarming vehicles. We
describe here a method to find and analyze all of the possible cluster
synchronization patterns in a Laplacian-coupled network, by applying methods of
computational group theory to dynamically-equivalent networks. We present a
general technique to evaluate the stability of each of the dynamically valid
cluster synchronization patterns. Our results are validated in an electro-optic
experiment on a 5 node network that confirms the synchronization patterns
predicted by the theory.Comment: 6 figure
Network synchronization: Spectral versus statistical properties
We consider synchronization of weighted networks, possibly with asymmetrical
connections. We show that the synchronizability of the networks cannot be
directly inferred from their statistical properties. Small local changes in the
network structure can sensitively affect the eigenvalues relevant for
synchronization, while the gross statistical network properties remain
essentially unchanged. Consequently, commonly used statistical properties,
including the degree distribution, degree homogeneity, average degree, average
distance, degree correlation, and clustering coefficient, can fail to
characterize the synchronizability of networks
Studio della correlazione tra il tremore vulcanico e l’attività esplosiva dell’Etna nel Gennaio - Febbraio 1999 mediante il sistema VoTA (Volcanic Tremor Analyzer)
Il seguente lavoro presenta lo studio della correlazione tra il tremore vulcanico e l'attività esplosiva dell'Etna nel gennaio-febbraio 1999 effettuato mediante l’implementazione e lo sviluppo del sistema automatico per l’analisi e la visualizzazione del tremore vulcanico VoTA (Volcanic Tremor Analizer).
In particolare, sono stati presi in considerazione cinque episodi eruttivi significativi dell’attività dell’Etna durante i quali il VoTA ha effettuato un’analisi on line del tremore vulcanico.
Successivamente, tali dati sono stati confrontati con le immagini dell’attività eruttiva riprese dalla telecamera di sorveglianza dell’Etna, permettendo di ricavare delle correlazioni tra le diverse fasi dell’attività esplosiva ed i corrispondenti valori del tremore vulcanico
Enhancing Synchrony in Chaotic Oscillators by Dynamic Relaying
In a chain of mutually coupled oscillators, the coupling threshold for
synchronization between the outermost identical oscillators decreases when a
type of impurity (in terms of parameter mismatch) is introduced in the inner
oscillator(s). The outer oscillators interact indirectly via dynamic relaying,
mediated by the inner oscillator(s). We confirm this enhancing of critical
coupling in the chaotic regimes of R\"ossler system in absence of coupling
delay and in Mackey-Glass system with delay coupling. The enhancing effect is
experimentally verified in electronic circuit of R\"ossler oscillators.Comment: 4 pages, 9 figure
Electronic circuit implementation of chaos synchronization
In this paper, an electronic circuit implementation of a robustly chaotic
two-dimensional map is presented. Two such electronic circuits are realized.
One of the circuits is configured as the driver and the other circuit is
configured as the driven system. Synchronization of chaos between the driver
and the driven system is demonstrated
- …