3,952 research outputs found

    Sublethal effects on reproduction in native fauna: are females more vulnerable to biological invasion?

    Full text link
    Although invasive species are a major threat to survivorship of native species, we know little about their sublethal effects. In soft-sediment marine systems, mat-forming invasive species often have positive effects, facilitating recruitment and enhancing the diversity and abundance of native invertebrates. However, because mat-forming invasive species change the habitat in which they invade, and benthic invertebrates are sensitive to environmental disturbance, important sublethal effects on native species may exist. Using a model marine system we show that the widespread mat-forming invasive alga Caulerpa taxifolia (Vahl) C. Agardh has strong negative effects on the reproductive traits of a native bivalve Anadara trapezia (Deshayes, 1840) (e.g. timing of reproductive development and spawning, and follicle and gamete production) even though the invader has positive effects on recruitment. Moreover, gender specific responses occurred and indicated that females were more susceptible to invasion than males. Our results indicate that sublethal effects of an invasive species on reproductive traits will have severe consequences for fitness of the native species

    Disturbance-mediated facilitation by an intertidal ecosystem engineer

    Get PDF
    Ecosystem engineers facilitate communities by providing a structural habitat that reduces abiotic stress or predation pressure for associated species. However, disturbance may damage or move the engineer to a more stressful environment, possibly increasing the importance of facilitation for associated communities. In this study, we determined how disturbance to intertidal boulders (i.e., flipping) and the subsequent movement of a structural ecosystem engineer, the tube-forming serpulid worm Galeolaria caespitosa, from the bottom (natural state, low abiotic stress) to the top (disturbed state, high abiotic stress) surface of boulders influenced the importance of facilitation for intertidal communities across two intertidal zones. Theory predicts stronger relative facilitation should occur in the harsher environments of the top of boulders and the high intertidal zone. To test this prediction, we experimentally positioned boulders with the serpulids either face up or face down for 12 months in low and high zones in an intertidal boulder field. There were very different communities associated with the different boulders and serpulids had the strongest facilitative effects on the more stressful top surface of boulders with approximately double the species richness compared to boulders lacking serpulids. Moreover, within the serpulid matrix itself there was also approximately double the species richness (both zones) and abundance (high zone only) of small invertebrates on the top of boulders compared to the bottom. The high relative facilitation on the top of boulders reflected a large reduction in temperature by the serpulid matrix on that surface (up to 10°C) highlighting a key role for modification of the abiotic environment in determining the community-wide facilitation. This study has demonstrated that disturbance and subsequent movement of an ecosystem engineer to a more stressful environment increased the importance of facilitation and allowed species to persist that would otherwise be unable to survive in that environment

    Reduced performance of native infauna following recruitment to a habitat-forming invasive marine alga

    Full text link
    Despite well-documented negative impacts of invasive species on native biota, evidence for the facilitation of native organisms, particularly by habitat-forming invasive species, is increasing. However, most of these studies are conducted at the population or community level, and we know little about the individual fitness consequences of recruitment to habitat-forming invasive species and, consequently, whether recruitment to these habitats is adaptive. We determined the consequences of recruitment to the invasive green alga Caulerpa taxifolia on the native soft-sediment bivalve Anadara trapezia and nearby unvegetated sediment. Initially, we documented the growth and survivorship of A. trapezia following a natural recruitment event, to which recruitment to C. taxifolia was very high. After 12 months, few clams remained in either habitat, and those that remained showed little growth. Experimental manipulations of recruits demonstrated that all performance measures (survivorship, growth and condition) were significantly reduced in C. taxifolia sediments compared to unvegetated sediments. Exploration of potential mechanisms responsible for the reduced performance in C. taxifolia sediments showed that water flow and water column dissolved oxygen (DO) were significantly reduced under the canopy of C. taxifolia and that sediment anoxia was significantly higher and sediment sulphides greater in C. taxifolia sediments. However, phytoplankton abundance (an indicator of food supply) was significantly higher in C. taxifolia sediments than in unvegetated ones. Our results demonstrate that recruitment of native species to habitat-forming invasive species can reduce growth, condition and survivorship and that studies conducted at the community level may lead to erroneous conclusions about the impacts of invaders and should include studies on life-history traits, particularly juveniles. © 2008 Springer-Verlag

    A comparison of three systemic accident analysis methods using 46 SPAD (Signals Passed at Danger) incidents

    Get PDF
    During the period 1996-2003 there were five fatal accidents on the UK railway network, three of which were Signals Passed at Danger (SPAD) events (Watford Junction, 1996; Southall, 1997; Ladbroke Grove, 1999). SPAD events vary in severity and whilst most are not fatal there is the potential to cause serious injuries to passengers and train staff and damage to railway infra-structure. This paper investigates how the current system accident analysis tool used within the railway, the Incident Factor Classification System (IFCS) identifies and analyses causal factors of SPAD events. To evaluate the effectiveness IFCS was used to analysis SPAD incident reports (n=46) and the outputs were compared with two systemic accident analysis methods and relevant outputs (the Human Factors Analysis and Classification System – HFACS and Acci-Maps). The initial reporting process proved to hinder all systemic accident analysis methods in the extraction of causal factors. However, once extracted, all system accident analysis methods were successful in categorizing causal factors and demonstrated various outputs to illustrate the findings

    The evolving definition of carcinogenic human papillomavirus

    Get PDF
    Thirteen human papillomavirus (HPV) genotypes have been judged to be carcinogenic or probably carcinogenic, and the cause of virtually all cervical cancer worldwide. Other HPV genotypes could possibly be involved. Although the inclusion of possibly carcinogenic HPV genotypes may hurt test specificity, it may indirectly increase the reassurance following a negative HPV test (i.e. the negative predictive value of an HPV test for cervical precancer and cancer). The future of cervical cancer screening in low-resource setting, however, may include once-in-a-lifetime, low-cost and rapid HPV testing. However, the tradeoff of more false positives for greater reassurance may not be acceptable if the local infrastructure cannot manage the screen positives. Now is the time for the community of scientists, doctors, and public health advocates to use the data presented at the 100th International Agency for Research on Cancer monograph meeting to rationally decide the target HPV genotypes for the next generation of HPV tests for use in high-resource and low-resource settings. The implications of including possibly HPV genotypes on HPV test performance, also for guidance on the use of these tests for cervical cancer prevention programs, are discussed

    Risk Factors for Cervical Precancer and Cancer in HIV-Infected, HPV-Positive Rwandan Women

    Get PDF
    Although cervical cancer is an AIDS-defining condition, infection with human immunodeficiency virus (HIV) may only modestly increase the risk of cervical cancer. There is a paucity of information regarding factors that influence the natural history of human papillomavirus (HPV) in HIV-infected women. We examined factors associated with cervical intraepithelial neoplasia grade 3 or cancer (CIN3+) in Rwandan women infected with both HIV and HPV (HIV+/HPV+).In 2005, 710 HIV+ Rwandan women ≥25 years enrolled in an observational cohort study; 476 (67%) tested HPV+. Each woman provided sociodemographic data, CD4 count, a cervical cytology specimen and cervicovaginal lavage (CVL), which was tested for >40 HPV genotypes by MY09/MY11 PCR assay. Logistic regression models calculated odds ratios (OR) and 95% confidence intervals (CI) of associations of potential risk factors for CIN3+ among HIV+/HPV+ women.Of the 476 HIV+/HPV+ women 42 (8.8%) were diagnosed with CIN3+. Factors associated with CIN3+ included ≥7 (vs. 0-2) pregnancies, malarial infection in the previous six months (vs. never), and ≥7 (vs. 0-2) lifetime sexual partners. Compared to women infected by non-HPV16 carcinogenic HPV genotypes, HPV16 infection was positively associated and non-carcinogenic HPV infection was inversely associated with CIN3+. CD4 count was significantly associated with CIN3+ only in analyses of women with non-HPV16 carcinogenic HPV (OR = 0.62 per 100 cells/mm(3), CI = 0.40-0.97).In this HIV+/HPV+ population, lower CD4 was significantly associated with CIN3+ only in women infected with carcinogenic non-HPV16. We found a trend for higher risk of CIN3+ in HIV+ women reporting recent malarial infection; this association should be investigated in a larger group of HIV+/HPV+ women

    A Unifying Theory of Biological Function

    Get PDF
    A new theory that naturalizes biological function is explained and compared with earlier etiological and causal role theories. Etiological theories explain functions from how they are caused over their evolutionary history. Causal role theories analyze how functional mechanisms serve the current capacities of their containing system. The new proposal unifies the key notions of both kinds of theories, but goes beyond them by explaining how functions in an organism can exist as factors with autonomous causal efficacy. The goal-directedness and normativity of functions exist in this strict sense as well. The theory depends on an internal physiological or neural process that mimics an organism’s fitness, and modulates the organism’s variability accordingly. The structure of the internal process can be subdivided into subprocesses that monitor specific functions in an organism. The theory matches well with each intuition on a previously published list of intuited ideas about biological functions, including intuitions that have posed difficulties for other theories
    • …
    corecore