46 research outputs found
Patterns of wood carbon dioxide efflux across a 2,000-m elevation transect in an Andean moist forest
During a 1-year measurement period, we recorded the CO2 efflux from stems (RS) and coarse woody roots (RR) of 13–20 common tree species at three study sites at 1,050, 1,890 and 3,050 m a.s.l. in an Andean moist forest. The objective of this work was to study elevation changes of woody tissue CO2 efflux and the relationship to climate variation, site characteristics and growth. Furthermore, we aim to provide insights into important respiration–productivity relationships of a little studied tropical vegetation type. We expected RS and RR to vary with dry and humid season conditions. We further expected RS to vary more than RR due to a more stable soil than air temperature regime. Seasonal variation in woody tissue CO2 efflux was indeed mainly attributable to stems. At the same time, temperature played only a small role in triggering variations in RS. At stand level, the ratio of C release (g C m−2 ground area year−1) between stems and roots varied from 4:1 at 1,050 m to 1:1 at 3,050 m, indicating the increasing prevalence of root activity at high elevations. The fraction of growth respiration from total respiration varied between 10 (3,050 m) and 14% (1,050 m) for stems and between 5 (1,050 m) and 30% (3,050 m) for roots. Our results show that respiratory activity and hence productivity is not driven by low temperatures towards higher elevations in this tropical montane forest. We suggest that future studies should examine the limitation of carbohydrate supply from leaves as a driver for the changes in respiratory activity with elevation
Seasonal variation of temperature response of respiration in invasive Berberis thunbergii (Japanese barberry) and two co-occurring native understory shrubs in a northeastern US deciduous forest
In the understory of a closed forest, plant growth is limited by light availability, and early leafing is
proposed to be an important mechanism of plant invasion by providing a spring C ‘‘subsidy’’ when high light is
available. However, studies on respiration, another important process determining plant net C gain, are rare in
understory invasive plants.
In this study, leaf properties and the temperature response of leaf respiration were compared between invasive Berberis thunbergii, an early leafing understory shrub, and two native shrubs, Kalmia latifolia, a broadleaf evergreen and Vaccinium corymbosum, a late leafing deciduous species, in an oak-dominated deciduous forest.
The seasonal trend of the basal respiration rates (R0) and the temperature response coefficient (E0), were different among the three shrubs and species-specific negative correlations were observed between R0 and E0. All three shrubs showed significant correlation between respiration rate on an area basis (20_C) and leaf N on an area basis. The relationship was attributed to the variation of both leaf N on a mass basis and leaf mass per area (LMA) in B. thunbergii, but to LMA only in K. latifolia and V. corymbosum. After modeling leaf respiration throughout 2004, B. thunbergii displayed much higher annual leaf respiration (mass based) than the two native shrubs, indicating a higher cost per unit of biomass investment. Thus, respiratory properties alone were not likely to lead to C balance advantage of B. thunbergii. Future studies on whole plant C budgets and leaf construction cost are needed to address the C balance advantage in early leafing understory shrubs like B. thunbergii