6,863 research outputs found
Recommended from our members
JAK2V617F mediates resistance to DNA damage-induced apoptosis by modulating FOXO3A localization and Bcl-xL deamidation.
The JAK2V617F mutation is found in most patients with a myeloproliferative neoplasm (MPN). This gain-of-function mutation dysregulates cytokine signaling and is associated with increased accumulation of DNA damage, a process likely to drive disease evolution. JAK2V617F inhibits NHE-1 upregulation in response to DNA damage and consequently represses Bcl-xL deamidation and apoptosis, thus giving rise to inappropriate cell survival. However, the mechanism whereby NHE-1 expression is inhibited by JAK2V617F is unknown. In this study, we demonstrate that the accumulation of reactive oxygen species (ROS) in cells expressing JAK2V617F compromises the NHE-1/Bcl-xL deamidation pathway by repressing NHE-1 upregulation in response to DNA damage. In JAK2V617F-positive cells, increased ROS levels results from aberrant PI3K signaling, which decreases nuclear localization of FOXO3A and decreases catalase expression. Furthermore, when compared with autologous control erythroblasts, clonally derived JAK2V617F-positive erythroblasts from MPN patients displayed increased ROS levels and reduced nuclear FOXO3A. However, in hematopoietic stem cells (HSCs), FOXO3A is largely localized within the nuclei despite the presence of JAK2V617F mutation, suggesting that JAK2-FOXO signaling has a different effect on progenitors compared with stem cells. Inactivation of FOXO proteins and elevation of intracellular ROS are characteristics common to many cancers, and hence these findings are likely to be of relevance beyond the MPN field.Work in the Green lab is supported by Leukemia and Lymphoma
Research, Cancer Research UK, the Kay Kendall Leukaemia Fund, the NIHR
Cambridge Biomedical Research Centre, the Cambridge Experimental Cancer
Medicine Centre, and the Leukemia & Lymphoma Society of America. DGK was
supported by a postdoctoral fellowship from the Canadian Institutes of Health
Research (Ottawa, ON), and a Lady Tata Memorial Trust International Award for
Research in Leukaemia (London, UK). HJP was supported by a postdoctoral
fellowship from the Human Frontier Science Program.This is the accepted manuscript. The final version is available at http://www.nature.com/onc/journal/vaop/ncurrent/full/onc2015285a.html
Integrated analysis of global proteome, phosphoproteome, and glycoproteome enables complementary interpretation of disease-related protein networks
Multi-dimensional proteomic analyses provide different layers of protein information, including protein abundance and post-translational modifications. Here, we report an integrated analysis of protein expression, phosphorylation, and N-glycosylation by serial enrichments of phosphorylation and N-glycosylation (SEPG) from the same tissue samples. On average, the SEPG identified 142,106 unmodified peptides of 8,625 protein groups, 18,846 phosphopeptides (15,647 phosphosites), and 4,019 N-glycopeptides (2,634 N-glycosites) in tumor and adjacent normal tissues from three gastric cancer patients. The combined analysis of these data showed that the integrated analysis additively improved the coverages of gastric cancer-related protein networks; phosphoproteome and N-glycoproteome captured predominantly low abundant signal proteins, and membranous or secreted proteins, respectively, while global proteome provided abundances for general population of the proteome. Therefore, our results demonstrate that the SEPG can serve as an effective approach for multi-dimensional proteome analyses, and the holistic profiles of protein expression and PTMs enabled improved interpretation of disease-related networks by providing complementary information.11103Ysciescopu
External sources of clean technology: evidence from the clean development mechanism
New technology is fundamental to sustainable development. However, inventors from industrialized countries often refuse technology transfer because they worry about reverse-engineering. When can clean technology transfer succeed? We develop a formal model of the political economy of North–South technology transfer. According to the model, technology transfer is possible if (1) the technology in focus has limited global commercial potential or (2) the host developing country does not have the capacity to absorb new technologies for commercial use. If both conditions fail, inventors from industrialized countries worry about the adverse competitiveness effects of reverse-engineering, so technology transfer fails. Data analysis of technology transfer in 4,894 projects implemented under the Kyoto Protocol’s Clean Development Mechanism during the 2004–2010 period provides evidence in support of the model
Mycobacterium tuberculosis Responds to Chloride and pH as Synergistic Cues to the Immune Status of its Host Cell
PubMed ID: 23592993This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
The increase of the functional entropy of the human brain with age
We use entropy to characterize intrinsic ageing properties of the human brain. Analysis of fMRI data from a large dataset of individuals, using resting state BOLD signals, demonstrated that a functional entropy associated with brain activity increases with age. During an average lifespan, the entropy, which was calculated from a population of individuals, increased by approximately 0.1 bits, due to correlations in BOLD activity becoming more widely distributed. We attribute this to the number of excitatory neurons and the excitatory conductance decreasing with age. Incorporating these properties into a computational model leads to quantitatively similar results to the fMRI data. Our dataset involved males and females and we found significant differences between them. The entropy of males at birth was lower than that of females. However, the entropies of the two sexes increase at different rates, and intersect at approximately 50 years; after this age, males have a larger entropy
The endogenous caspase-8 inhibitor c-FLIPL regulates ER morphology and crosstalk with mitochondria
Components of the death receptors-mediated pathways like caspase-8 have been identified in complexes at intracellular membranes to spatially restrict the processing of local targets. In this study, we report that the long isoform of the cellular FLICE-inhibitory protein (c-FLIPL), a well- known inhibitor of the extrinsic cell death initiator caspase-8, localizes at the endoplasmic reticulum (ER) and mitochondria-associated membranes (MAMs). ER morphology was disrupted and ER Ca2+-release as well as ER-mitochondria tethering were decreased in c-FLIP-/- mouse embryonic fibroblasts (MEFs). Mechanistically, c-FLIP ablation resulted in enhanced basal caspase-8 activation and in caspase-mediated processing of the ER-shaping protein reticulon-4 (RTN4) that was corrected by re-introduction of c-FLIPL and caspase inhibition, resulting in the recovery of a normal ER morphology and ER-mitochondria juxtaposition. Thus, the caspase-8 inhibitor c-FLIPL emerges as a component of the MAMs signaling platforms, where caspases appear to regulate ER morphology and ER-mitochondria crosstalk by impinging on ER-shaping proteins like the RTN4
The prognostic value of systemic inflammation in patients undergoing surgery for colon cancer: comparison of composite ratios and cumulative scores
Introduction:
The systemic inflammatory response has been proven to have a prognostic value. There are two methods of assessing the systemic inflammatory response composite ratios (R) and cumulative scores (S). The aim of this study was to compare the prognostic value of ratios and scores in patients undergoing surgery for colon cancer.
Methods:
Patients were identified prospectively in a single surgical unit. Preoperative neutrophil (N), lymphocyte (L), monocyte (M) and platelet (P) counts, CRP (C) and albumin (A) levels were recorded. The relationship between composite ratios neutrophil–lymphocyte ratio (NLR), platelet–lymphocyte ratio (PLR), lymphocyte–monocyte ratio (LMR), C-reactive protein albumin ratio (CAR) and the cumulative scores neutrophil– lymphocyte score (NLS), platelet–lymphocyte score (PLS), lymphocyte–monocyte score (LMS), neutrophil– platelet score (NPS), modified Glasgow prognostic score (mGPS) and clinicopathological characteristics, cancer-specific survival (CSS) and overall survival (OS), were examined.
Results:
A total of 801 patients were examined. When adjusted for tumour node metastasis (TNM) stage, NLR >5 (p < 0.001), NLS (p < 0.01), PLS (p < 0.001), LMR <2.4 (p < 0.001), LMS (p < 0.001), NPS (p < 0.001), CAR >0.22 (p < 0.001) and mGPS (p < 0.001) were significantly associated with CSS. In patients undergoing elective surgery (n = 689), the majority of the composite ratios/scores correlated with age (p < 0.01), BMI (p < 0.01), T stage (p < 0.01), venous invasion (p < 0.01) and peritoneal involvement (p < 0.01). When NPS (myeloid) and mGPS (liver) were directly compared, their relationship with CSS and OS was similar.
Conclusions:
Both composite ratios and cumulative scores had prognostic value, independent of TNM stage, in patients with colon cancer. However, cumulative scores, based on normal reference ranges, are simpler and more consistent for clinical use
Recommended from our members
Phaeoviruses discovered in kelp (Laminariales)
Phaeoviruses are latent double-stranded DNA viruses that insert their genomes into those of their brown algal (Phaeophyceae) hosts. So far these viruses are known only from members of the Ectocarpales, which are small and short-lived macroalgae. Here we report molecular and morphological evidence for a new Phaeovirus cluster, referred to as sub-group C, infecting kelps (Laminariales) of the genera Laminaria and Saccharina, which are ecologically and commercially important seaweeds. Epifluorescence and TEM observations indicate that the Laminaria digitata Virus (LdigV), the type species of sub-group C, targets the host nucleus for its genome replication, followed by gradual degradation of the chloroplast and assembly of virions in the cytoplasm of both vegetative and reproductive cells. This study is the first to describe phaeoviruses in kelp. In the field, these viruses infected two thirds of their host populations; however, their biological impact remains unknown
Sideband Cooling Micromechanical Motion to the Quantum Ground State
The advent of laser cooling techniques revolutionized the study of many
atomic-scale systems. This has fueled progress towards quantum computers by
preparing trapped ions in their motional ground state, and generating new
states of matter by achieving Bose-Einstein condensation of atomic vapors.
Analogous cooling techniques provide a general and flexible method for
preparing macroscopic objects in their motional ground state, bringing the
powerful technology of micromechanics into the quantum regime. Cavity opto- or
electro-mechanical systems achieve sideband cooling through the strong
interaction between light and motion. However, entering the quantum regime,
less than a single quantum of motion, has been elusive because sideband cooling
has not sufficiently overwhelmed the coupling of mechanical systems to their
hot environments. Here, we demonstrate sideband cooling of the motion of a
micromechanical oscillator to the quantum ground state. Entering the quantum
regime requires a large electromechanical interaction, which is achieved by
embedding a micromechanical membrane into a superconducting microwave resonant
circuit. In order to verify the cooling of the membrane motion into the quantum
regime, we perform a near quantum-limited measurement of the microwave field,
resolving this motion a factor of 5.1 from the Heisenberg limit. Furthermore,
our device exhibits strong-coupling allowing coherent exchange of microwave
photons and mechanical phonons. Simultaneously achieving strong coupling,
ground state preparation and efficient measurement sets the stage for rapid
advances in the control and detection of non-classical states of motion,
possibly even testing quantum theory itself in the unexplored region of larger
size and mass.Comment: 13 pages, 7 figure
- …