9,098 research outputs found

    Inverse design technique for cascades

    Get PDF
    A numerical technique to generate cascades is presented. The basic prescribed parameters are: inlet angle, exit pressure, and distribution of blade thickness and lift along a blade. Other sets of parameters are also discussed. The technique is based on the lambda scheme. The problem of stability of the computation as a function of the prescribed set of parameters and the treatment of boundary conditions is discussed. A one dimensional analysis to indicate a possible way for assuring stability for any two dimensional calculation is provided

    A recursive-faulting model of distributed damage in confined brittle materials

    Get PDF
    We develop a model of distributed damage in brittle materials deforming in triaxial compression based on the explicit construction of special microstructures obtained by recursive faulting. The model aims to predict the effective or macroscopic behavior of the material from its elastic and fracture properties; and to predict the microstructures underlying the microscopic behavior. The model accounts for the elasticity of the matrix, fault nucleation and the cohesive and frictional behavior of the faults. We analyze the resulting quasistatic boundary value problem and determine the relaxation of the potential energy, which describes the macroscopic material behavior averaged over all possible fine-scale structures. Finally, we present numerical calculations of the dynamic multi-axial compression experiments on sintered aluminum nitride of Chen and Ravichandran [1994. Dynamic compressive behavior of ceramics under lateral confinement. J. Phys. IV 4, 177–182; 1996a. Static and dynamic compressive behavior of aluminum nitride under moderate confinement. J. Am. Soc. Ceramics 79(3), 579–584; 1996b. An experimental technique for imposing dynamic multiaxial compression with mechanical confinement. Exp. Mech. 36(2), 155–158; 2000. Failure mode transition in ceramics under dynamic multiaxial compression. Int. J. Fracture 101, 141–159]. The model correctly predicts the general trends regarding the observed damage patterns; and the brittle-to-ductile transition resulting under increasing confinement

    Frictional Collisions Off Sharp Objects

    Get PDF
    This work develops robust contact algorithms capable of dealing with multibody nonsmooth contact geometries for which neither normals nor gap functions can be defined. Such situations arise in the early stage of fragmentation when a number of angular fragments undergo complex collision sequences before eventually scattering. Such situations precludes the application of most contact algorithms proposed to date

    Controllability of a viscoelastic plate using one boundary control in displacement or bending

    Full text link
    In this paper we consider a viscoelastic plate (linear viscoelasticity of the Maxwell-Boltzmann type) and we compare its controllability properties with the (known) controllability of a purely elastic plate (the control acts on the boundary displacement or bending). By combining operator and moment methods, we prove that the viscoelastic plate inherits the controllability properties of the purely elastic plate

    Evolutionary impacts of fishing: overfishing's ‘Darwinian debt’

    Get PDF
    Human harvesting of fish results in far greater mortality than natural causes, with enormous potential to affect the phenotypic traits of fish populations, even after exploitation stops. Central to understanding these effects is the untangling of the genetic versus environmental components of phenotypic response. Evolutionary consequences of harvesting must be incorporated into conservation and management strategies

    Evolution of the fine-structure constant in runaway dilaton models

    Get PDF
    We study the detailed evolution of the fine-structure constant α\alpha in the string-inspired runaway dilaton class of models of Damour, Piazza and Veneziano. We provide constraints on this scenario using the most recent α\alpha measurements and discuss ways to distinguish it from alternative models for varying α\alpha. For model parameters which saturate bounds from current observations, the redshift drift signal can differ considerably from that of the canonical Λ\LambdaCDM paradigm at high redshifts. Measurements of this signal by the forthcoming European Extremely Large Telescope (E-ELT), together with more sensitive α\alpha measurements, will thus dramatically constrain these scenarios.Comment: 11 pages, 4 figure

    Modelling and solutions to the linear stability of a detonation wave in the kinetic frame

    Get PDF
    Artigo publicado num número especial da revista.The analysis of linear stability of a steady detonation wave is formulated for the first time at the kinetic level in the frame of the Boltzmann equation extended to reacting gases. Within this context and for a reversible reaction, the stability problem is carried out, in agreement with most classical papers on gas detonation, through a normal mode approach for the one-dimensional disturbances of the steady wave solution, and an acoustic radiation condition at the final equilibrium as closure condition. The proposed modelling leads to an initial value problem, constituted by the linearized reactive Euler equations in the perturbed shock frame with related Rankine-Hugoniot conditions, which can be solved by means of a proper numerical technique. An application is provided for an elementary bimolecular reaction.Centro de Matemática da Universidade do MinhoFundação para a Ciência e a Tecnologia (FCT)Italian INDAM-GNF

    Kinetic approach to transport properties of a reacting gas

    Get PDF
    A multicomponent reacting gas with reversible reactions is studied at a kinetic level with the main objective of deriving the reactive Navier-Stokes equations in dependence on the macroscopic variables, and characterizing the dissipative terms related to shear viscosity, heat conduction and thermal diffusion. A step-by-step procedure, which can be applied to a quite large variety of reactive flows, is proposed in order to identify the transport coefficients, basically resorting to a first-order density approximation of Chapman-Enskog type.Fundação para a Ciência e Tecnologia (FCT) - Programa Operacional "Ciência, Tecnologia, Inovação" (POCTI).National Research Project PRIN 2003

    Statistical characterization of the anisotropic strain energy in soft materials with distributed fibers

    Get PDF
    We discuss analytical and numerical tools for the statistical characterization of the anisotropic strain energy density of soft hyperelastic materials embedded with fibers. We consider spatially distributed orientations of fibers following a tridimensional or a planar architecture. We restrict our analysis to material models dependent on the fourth pseudo-invariant I4 of the Cauchy-Green tensor, and to exponential forms of the fiber strain energy function Ψaniso. Under different loading conditions, we derive the closed-form expression of the probability density function for I4 and Ψaniso. In view of bypassing the cumbersome extension-contraction switch, commonly adopted for shutting down the contribution of contracted fibers in models based on generalized structure tensors, for significant loading conditions we identify analytically the support of the fibers in pure extension. For uniaxial loadings, the availability of the probability distribution function and the knowledge of the support of the fibers in extension yield to the analytical expression of average and variance of I4 and Ψaniso, and to the direct definition of the average second Piola-Kirchhoff stress tensor. For generalized loadings, the dependence of I4 on the spatial orientation of the fibers can be analyzed through angle plane diagrams. Angle plane diagrams facilitate the assessment of the influence of the pure extension condition on the definition of the stable support of fibers for the statistics related to the anisotropic strain energy density. © 2015 Elsevier Ltd. All rights reserved
    corecore