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a b s t r a c t

We discuss analytical and numerical tools for the statistical characterization of the anisotropic

strain energy density of soft hyperelastic materials embedded with fibers. We consider spa-

tially distributed orientations of fibers following a tridimensional or a planar architecture. We

restrict our analysis to material models dependent on the fourth pseudo-invariant I4 of the

Cauchy–Green tensor, and to exponential forms of the fiber strain energy function �aniso. Un-

der different loading conditions, we derive the closed-form expression of the probability den-

sity function for I4 and �aniso. In view of bypassing the cumbersome extension–contraction

switch, commonly adopted for shutting down the contribution of contracted fibers in models

based on generalized structure tensors, for significant loading conditions we identify analyt-

ically the support of the fibers in pure extension. For uniaxial loadings, the availability of the

probability distribution function and the knowledge of the support of the fibers in extension

yield to the analytical expression of average and variance of I4 and �aniso, and to the direct

definition of the average second Piola–Kirchhoff stress tensor. For generalized loadings, the

dependence of I4 on the spatial orientation of the fibers can be analyzed through angle plane

diagrams. Angle plane diagrams facilitate the assessment of the influence of the pure exten-

sion condition on the definition of the stable support of fibers for the statistics related to the

anisotropic strain energy density.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

In the last two decades soft tissue biomechanics and

advanced constitutive modeling have been experiencing a

growing research activity. The outcomes of this expand-

ing impulse are glaring, since computational models of

biological materials are now commonly used in tissue

engineering design and development. Among others, well

recognized examples of application can be found in cardio-

vascular functioning (Driessen et al., 2005), haemodynamics
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(Horgan and Saccomandi, 2003; Li and Robertson, 2009;

Tsamis et al., 2013), damage and remodeling (Ferrara and

Pandolfi, 2008; Ni Annaidh et al., 2012; Sánchez et al., 2014).

As a consequence of the intrinsically patient-specific na-

ture and of the microstructural complexity of biological tis-

sues, their modeling is very challenging and still incomplete.

The main difficulties are related to highly nonlinear behav-

iors and to inhomogeneities in the mechanical properties

(Sacks, 2003).

Computational approaches for modeling the constitutive

relations of biologic soft materials exhibiting reversibility

rely on the definition of an appropriate strain energy den-

sity, eventually embedding, in a continuum sense, the under-

lying multiscale structure of the material. Within this per-

spective, microstructural constitutive models account for the
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List of symbols

a: fibers unit vector

A: fibers structure tensor

H: average fibers structure tensor

H: average fourth order structure tensor

�, �: aleatoric Euler angles

θ , φ: occurrence of the aleatoric Euler angles

I4: aleatoric fourth pseudo-invariant

I4: occurrence of the aleatoric fourth pseudo-

invariant

λ: imposed stretch

�: aleatoric anisotropic isochoric strain energy

density

�: occurrence of the aleatoric anisotropic iso-

choric strain energy density

〈S〉: average anisotropic stress tensor

dω: spherical solid angle

dθ : planar angle increment

	: unit sphere integration domain

D: generic integration domain

DF: extension–contraction integration domain

DE: pure-extension integration domain

ρ(a): generic probability distribution function

ρ�(θ ): probability distribution function of �

ρI4
(I4): probability distribution function of I4

ρ� (�): probability distribution function of �

N�: normalization factor of ρ�(θ )

NI4
: normalization factor of ρI4

(I4)
N� : normalization factor of ρ� (�)

I∗
4
: average fourth invariant

�∗: strain energy density evaluated at the aver-

age invariant � = �(I∗
4
)

σ 2
I4

: variance of I4

σ 2
Ψ

: variance of �

PDF: probability distribution function

architecture and the spatial organization of the material

structure by introducing explicitly their description in the

strain energy density. A microstructural approach permits to

better understand the physical significance of the material

constants of the tissue, facilitating the achievement of a cor-

rect thus predictive macroscopic material model to be used

in numerical applications.

To clarify the nature of the variability in the mechanical

properties of fiber-reinforced soft tissues, Lanir (1983) in-

troduced a stochastic approach within the definition of con-

stitutive models. Lanir defined the strain energy density as

the integral of the strain energy density of single fibers, spa-

tially oriented according to a statistical distribution. Exten-

sions and particular applications of this approach have been

discussed in subsequent research (Holzapfel et al., 2000;

Rodríquez et al., 2006; Alastrué et al., 2007; Federico and

Gasser, 2010; Gizzi et al., 2014).

In spite of the large literature flourished from the semi-

nal work of Lanir, we can acknowledge only a few attempts

of characterizing analytically the statistical properties of the

probability distribution functions (PDF) of complex materials
showing an anisotropic microstructure. In particular, Zulliger

et al. (2004) considered a log-logistic PDF for the progres-

sive engagement of the fibers, while more recently Rodríquez

et al. (2006) introduced a stochastic structural model de-

scribing the waviness of a fiber bundle. The material model

described in Rodríquez et al. (2006), derived from the worm-

like chain model of Arruda and Boyce (1993), adopts a PDF of

Beta type, calculated using Bayesian statistics but assuming a

deterministic orientation of the fibers.

This study aims at characterizing analytically the statis-

tics of mechanically significant quantities related to soft ma-

terials embedded with a stochastic distribution of reinforc-

ing fibers. The presence of dispersed fibers confers to the

medium a certain degree of anisotropy not easy to be de-

scribed or quantified, whereas the availability of handy pa-

rameters would be highly desirable, especially in numerical

applications. We consider hyperelastic materials, and restrict

our consideration to isochoric behaviors. We assume that the

anisotropic behavior of the material can be fully described

by the fourth isochoric pseudo-invariant I4, which measures

the square of the stretch in the direction of the fibers. Start-

ing from a well established theoretical framework (Gasser

et al., 2006; Pandolfi and Vasta, 2012; Vasta et al., 2014), we

assume the tridimensional distribution of reinforcing fibers

to be defined through of the composition of two PDFs as-

sociated to the Euler angles � and �, regarded as aleatoric

variables. For uniaxial loading, we derive analytically the

closed-form PDF of I4, as sole aleatoric variable defining the

distribution, and, correspondingly, the PDF of the anisotropic

strain energy density, �aniso. We identify the theoretically

correct ranges of fiber in extension in terms of the meridian

angle � for I4 and �aniso, by generalizing the approximate

estimate recently proposed in Holzapfel and Ogden (2015),

and we provide a better approximation of the average sec-

ond Piola–Kirchhoff stress tensor. Furthermore, we discuss

the implication of multiaxial loading on the range of fibers

in extension, for tridimensional and planar distributions. We

provide analytical forms of the PDFs and of their support for

uniaxial and shear loadings, improving the computational ef-

ficiency of the stability condition for compressed fibers ex-

clusion. For more general loadings, we illustrate how, from

the observation of angle plane plots, it may be possible to

define the range of fibers in extension, to be considered in

the evaluation of the mechanically relevant statistics of the

material.

The paper is organized as follows. In Section 2 we formu-

late the generalities of the material models for distributed

fibers considered in this study and introduce the approx-

imations for the strain energy density and stress tensor.

In Section 3 we derive the closed-form PDF for the fourth

pseudo-invariant and the anisotropic free energy density in

the particular case of uniaxial loading in the direction of

the fibers. More general loading conditions for tridimen-

sional distributions of fibers are discussed in Section 4. In

Section 5 we derive the PDFs for planar distributions of fibers.

In Section 6 we present quantitative comparison between the

mechanical response of our novel closed-form derivations

and of alternative previous models. The results are discussed

in Section 7. Limitations and future perspectives are drawn

in Section 8.
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2. Distributed fiber material models

In the following, according to the notation used in

Holzapfel et al. (2000), we assume index notation for vec-

tors and tensors and use the notation [A] to indicate the ma-

trix representation of tensor A in a given basis. Moreover,

we comply with the standard notation for random variables,

thus denoting the random variable itself with non-italicized

uppercase symbol (e.g., �, �, I4, and W), and any particular

realization of the random variable with italicized, when pos-

sible lowercase, symbol (e.g., θ , φ, I4, and w) (Fisher et al.,

1987).

We comply with the usual assumption of a strain energy

density that decomposes additionally into three terms, fully

decoupled by separation of arguments, i.e.,

� = �vol + �iso + �aniso.

The first term, �vol = �vol( J), accounts for volume changes,

and is dependent on the volumetric deformation expressed

by the jacobian of the deformation gradient, J = det F. The

second term, �iso = �iso(I1, I2), accounts for the isochoric

behavior of the isotropic constituents of the material, i.e., the

matrix where the fibers are embedded, or for a portion of

randomly distributed fibers. Usually the isotropic term is as-

sumed to be dependent on the first and second invariants,

I1 and I2, of the modified right Cauchy–Green deformation

tensor C = F
T

F, where F = J−1/3F. The third term, �aniso, ad-

dresses isochoric anisotropic behaviors and describes the ef-

fects of the fiber reinforcement. It is customary to assume

that �aniso depends on the deformation through C and on

suitable structure tensors describing the fiber organization.

Structure tensors are built considering the orientation of the

fibers, characterized in the reference configuration by the

unit vector a, in the form A = a ⊗ a. By disregarding the de-

pendence on higher order invariants, the common assump-

tion is that �aniso is dependent only on the fourth invariant

I4 defined as

I4 = A : C. (1)

The physical meaning of I4 is the square of the stretch in the

reference direction a. It is clear that in the case of contraction,

a fiber will buckle and will not contribute to the stiffness of

the material. Therefore, the expression of the material stress

and stiffness should account for the fourth invariant (1) only

for I4 ≥ 1.

2.1. Anisotropic strain energy density

In the following we restrict our interest to the anisotropic

part of the strain energy density, in the attempt of character-

izing the statistical properties of the distribution of the rein-

forcement orientation. For a lighter notation, all the over bar

will be removed from isochoric symbols, tensors and invari-

ants, and � will be used with the meaning of �aniso.

The choice of the functional form of � is rather free; nev-

ertheless, the exponential form adopted in Holzapfel et al.

(2000) with reference to arterial walls shows mathematical

properties that render it advantageous with respect to alter-

native forms, and justify its wide popularity. Therefore we
will refer to the form (Pandolfi and Vasta, 2012)

�(I4) = k1

2k2

exp
[
k2(I4 − 1)

2
]

− k1

2k2

, (2)

where the coefficient k1 describes the fiber stiffness at low

strains and k2 controls the rigidity of the material at high

strains. We observe that (2) can be solved explicitly with re-

spect to I4.

Let us consider a material point in a fibrous solid, the sur-

rounding unit sphere 	, and a generic orientation defined

by the unit vector a, see Fig. 1(a). Fibers within 	 are spa-

tially oriented according to a density ρ(a), which quantifies

the amount of fibers in the direction a and obeys the symme-

try requirement ρ(a) ≡ ρ( − a). Given the orthogonal basis,

e1, e2, and e3, and the spherical coordinates in the reference

configuration, the unit vector a is expressed as

a(�,�) = sin � cos � e1 + sin � sin � e2 + cos � e3,

where � and � are the Euler angles. The structure tensor A
becomes

[A] =

⎡
⎢⎣

sin
2 � cos2 � sin

2 � sin � cos � sin � cos � cos �

sin
2 � sin � cos � sin

2 � sin
2 � sin � cos � sin �

sin � cos � cos � sin � cos � sin � cos2 �

⎤
⎥⎦.

(3)

We regard � and � as aleatoric variables varying in

[0, π ], [0, 2π ], respectively. As usual in statistical descrip-

tions, we denote with θ and φ, respectively, the occurrence

of such variables. Given the infinitesimal solid angle dω =
sin θ dθdφ, the amount ρ[a(θ , φ)]dω represents the num-

ber of fibers whose orientation falls in the range [(θ, θ + dθ),
(φ,φ + dφ)]. By definition of density, it follows that

∫
	

ρ
[
a(θ, φ)

]
dω=

∫ π

0

∫ 2π

0

ρ
[
a(θ, φ)

]
sin θ dφdθ =4π.

(4)

With reference to the considered distribution, the average

operator 〈 · 〉 is defined as

〈·〉 ≡ 1

4π

∫
ω
ρ(a)( · ) dω, (5)

and the average fourth pseudo-invariant is computed as

I∗4 ≡ 〈I4(a)〉 = 1

4π

∫
ω
ρ(a)(A : C) dω = 〈A〉 : C, (6)

where H = 〈A〉 is the average second order structure tensor

introduced in Gasser et al. (2006). Accordingly, the average

anisotropic strain energy density 〈�〉 is computed as

〈�〉 = 1

4π

∫
ω
ρ(a)Ψ (I4) dω. (7)

2.2. Transversely isotropic distributions of fibers

In view of applications in soft biological tissues, we as-

sume the fiber distribution to be characterized by rotational

symmetry about a mean referential direction, a0. In particu-

lar, we consider π-periodic distributions (Gasser et al., 2006)

and, without loss of generality, we take the mean direction

a to coincide with the unit vector e , see Fig. 1(a).
0 3



122 A. Gizzi et al. / Mechanics of Materials 92 (2016) 119–138

Fig. 1. Orientation of the generic unit vector a aligned with a portion of fibers in spherical coordinates for (a) a fully three-dimensional distribution and (b) a

planar distribution of fibers in the plane e2, e3.
Rotational symmetry confers a transversely isotropic

character to the overall response of the material. Within this

framework, the joint PDF ρ�, �(θ , φ)1 that describes the den-

sity of fiber orientation ρ[a(θ , φ)] can be recast as

ρ�,�(θ,φ) = ρ�(θ)
1

2π
. (8)

Accordingly, the normalization condition (4) reduces to

1

2

∫ π

0

ρ�(θ) sin θ dθ = 1.

The symmetric generalized structure tensor H becomes

H = 〈A〉 , [H] =
[
κ 0 0
0 κ 0
0 0 1 − 2κ

]
, (9)

where the coefficient κ is defined as

κ = 1

4

∫ π

0

ρ�(θ) sin
3 θ dθ . (10)

2.3. Random transformation

A general expression of the PDF for the random variable2

I4 can be obtained from the PDF of the Euler angles through a

random transformation procedure (Casella and Berger, 2008;

Mardia and Jupp, 2000). The procedure requires the intro-

duction of a new aleatoric variable W, with occurrence w,

such that an inverse transformation is uniquely defined as{
I4 = I4(�,�)
W = �

⇔
{
� = �(I4, W)
� = W

(11)
1 Given two random variables X and Y defined on a probability space, the

joint probability distribution for X and Y (also called bivariate distribution)

is a probability distribution that gives the probability that each X and Y falls

in a particular range of values specified for X and Y, respectively.
2 As already said, we denote with I4 and W the random variables, and with

I4 and w the particular occurrence of the random variable.
and characterized by the jacobian

[Js] =
[

∂ I4

∂�
∂ I4

∂�
∂W
∂�

∂W
∂�

]
=

[
∂ I4

∂�
∂ I4

∂�

0 1

]
, det Js = ∂ I4

∂�
.

Referring to the new set of aleatoric variables I4 and W, the

general property of probability distributions becomes

ρI4,W(I4, w)dI4dw = ρ�,�(θ,φ) sin θdθdφ, (12)

and the joint probability of the new random variables is re-

lated to the joint probability of the old random variables as

ρI4,W(I4, w) = ρ�,�(θ,φ) sin θ

det Js

∣∣∣∣ θ=θ(I4, w)
φ=w

= ρ�,�(θ,φ) sin θ

(
∂ I4
∂θ

)−1
∣∣∣∣∣ θ=θ(I4, w)

φ=w

(13)

Thus the PDF of I4 is obtained by integrating ρI4,W (I4, w) over

the whole range of W, i.e.,

ρI4(I4) =
∫ 2π

0

ρ�,�(θ,φ) sin θ

(
∂ I4
∂θ

)−1
∣∣∣∣∣θ=θ(I4, w)
φ=w

dw.

(14)

If we consider the case of transversely isotropic materials

with a uniform distribution of the aleatoric variable �, cf.

Eq. (8), the PDF in (14) becomes

ρI4
(I4) = 1

2π

∫ 2π

0

ρ�(θ) sin θ

(
∂ I4
∂θ

)−1
∣∣∣∣∣
θ=θ(I4,w)

dw, (15)

where in general I4 will depend on both Euler angles, i.e.,

I4(�, �). Under particular loading conditions, the fourth in-

variant will depend only on �, leading to the direct transfor-

mation

I4 = I4(�) ⇔ � = �(I4),
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Fig. 2. Representative scheme for random variables transformation and the

definition of the corresponding support.
for which Eq. (15) reduces to

ρI4
(I4) = ρ�(θ) sin θ

(
∂ I4
∂θ

)−1
∣∣∣∣∣
θ=θ(I4)

. (16)

A schematic interpretation of the random transformation

procedure is shown in Fig. 2. Upon this transformation, con-

sistency requires to use the PDF (15) in the definition of av-

erage I∗4, variance σ 2
I4

, and, in general, any further statistics of

I4, i.e.,

I∗4 ≡ 〈I4〉 =
∫
D
ρI4

(I4) I4 dI4, (17)

σ 2
I4

≡ 〈(I4 − I∗4)
2〉 =

∫
D

ρI4
(I4) (I4 − I∗4)

2dI4, (18)

where D denotes a suitable support of I4.

2.4. Approximation of the anisotropic strain energy density

and stress tensor

In hyperelasticity, the analytical form of the strain energy

density leads to the analytical form of stress and elasticity

tensors. Except very particular cases, for spatial distributions

of the fiber orientation, 〈�〉, as defined in Eq. (7), is not avail-

able in analytical form, neither are the stress and the elas-

ticity tensors. This can be a disadvantage, not only for com-

putational reasons, but also because the features of the fiber

distribution cannot be directly transferred to (and observed

in) the stress and elasticity tensors. To subside this disadvan-

tage, it is convenient to use approximated forms of the strain

energy density.

Here, we comply with the approach proposed in Pandolfi

and Vasta (2012), where the anisotropic strain energy density

� is assumed to be a function of the fourth invariant I4 and

is expanded in Taylor series about the average I∗4, up to the

second order terms. We refer to this expansion as second or-

der approximation. The approximated from of the anisotropic
strain energy density associated to the fibers in the direction

�, e.g., the one reported in Eq. (2), is

�(I4) 	 �∗ + �
′ ∗
(I4 − I∗4) + 1

2
�

′′ ∗
(I4 − I∗4)

2
(19)

where

�∗ = �(I∗4) �
′ ∗ = ∂Ψ

∂ I4

∣∣∣∣
I4=I∗

4

�
′′ ∗ = ∂2Ψ

∂ I4∂ I4

∣∣∣∣
I4=I∗

4

.

The average anisotropic strain energy density follows in ana-

lytical form as

〈�〉 =
∫
D

ρI4
(I4)�(I4) dI4 = �∗ + 1

2
�

′′ ∗
σ 2

I4
. (20)

Within the second order approximation, the definition of

variance σ 2
I4

requires the introduction of the additional co-

efficient

κ̂ = 1

16

∫ π

0

ρ�(θ) sin
5 θ dθ, (21)

that accounts for higher order terms (cf. Pandolfi and Vasta,

2012). The average second Piola–Kirchhoff stress tensor fol-

lows as

〈S〉 = 2
∂〈�〉
∂C

= f
(
I∗4, σ 2

I4

)
H + g

(
I∗4, σ 2

I4

)
H : C. (22)

The fourth order tensor H in Eq. (22) depends on the coeffi-

cients κ and κ̂ . The definition of the tensor H can be found in

Appendix A, together with the definition of the functions f, g,

and of the non zero components of 〈S〉.

In the following sections, we will derive the explicit ex-

pressions for the PDF of I4 under particular conditions of

loading, recurrent in applications of interest for transversely

isotropic materials. As far as the numerical applications are

concerned, we will assume ρ�(θ ) to be a modified von Mises

distribution, i.e., the projection of the normal distribution

onto the unit sphere (Fisher et al., 1987). The modified von

Mises distribution differs from the standard one regarding

the normalization coefficient N�(b) and reads

ρ�(θ) = N�(b) exp (b cos 2θ), (23)

where

N�(b) = 4

√
b

2π

exp b

erfi(
√

2b)
,

erfi(x) = − 2 i√
π

∫ ix

0

exp
(
−t2

)
dt

3. Uniaxial loading in the mean fiber direction

Uniaxial loading of the fibrous material is achieved by

applying a stretch λ in the mean direction of the fiber ori-

entation, see Fig. 3(a). For this loading, the fourth pseudo-

invariant is a function only of the angle �. We wish to de-

rive the reciprocal functional dependence between the two

aleatoric variables � and I4 and to find the expression of

their PDFs. We begin without imposing the restriction on

contracted fibers. The deformation gradient and the associ-

ated Cauchy–Green deformation tensor are

[F] =

⎡
⎣

1√
λ

0 0

0 1√
λ

0

0 0 λ

,

⎤
⎦ [C] =

⎡
⎣

1
λ

0 0

0 1
λ

0

0 0 λ2

⎤
⎦. (24)
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Fig. 3. Schematic of the basic loading cases, illustrating three values of the fiber concentration parameter b of the modified von Mises distribution. (a) Plane

e3–e2, uniaxial loading in direction e3. (b) Plane e2–e3, simple shear cases.
The fourth pseudo-invariant written for the generic direction

� becomes

I4 = I4(�) = 1

λ
+ λ3 − 1

λ
cos2 �. (25)

For a given λ, the function (25) can be solved with respect to

� leading to

�(I4) = arccos

√
λ I4 − 1

λ3 − 1
. (26)

As also discussed in Holzapfel and Ogden (2015), the enforce-

ment of the local stability condition I4 ≥ 1 restricts the vari-

ability of � to the intervals

arccos
1√

1 + λ + λ2
≤ � ≤ π

− arccos
1√

1 + λ + λ2
if λ ≤ 1 ,

0 ≤ � ≤ arccos
1√

1 + λ + λ2
∪ π

− arccos
1√

1 + λ + λ2
≤ � ≤ π if λ ≥ 1 , (27)

For uniaxial loading in the main direction of the fibers, Fig. 4

shows the dependence of I4 versus �, see Eq. (25). The shad-

owed zones visualize the ranges of � for which fibers are in

extension, i.e., I4 > 1. Fig. 4(a,b) refer to an applied stretch

λ ≤ 1, λ ≥ 1, respectively. Fig. 5(a) visualizes the contour lev-

els of I in the angle plane (�, �).
4
Restrictions (27) exclude the contribution of contracted

fibers. Accounting for such restrictions, it is possible to com-

pute the exact value of the parameters κ and κ̂ defined in

Eqs. (10)–(21) at an assigned stretch λ. The two parameters

computed for the whole range of extended and contracted

fibers have been reported first in Pandolfi and Vasta (2012).

Fig. 6 shows the contraction free parameters κ and κ̂ plot-

ted versus the stretch λ and the concentration parameter b of

the von Mises distribution. The contraction free parameters

are affected sensibly by the imposed stretch λ, and the corre-

sponding curves lay always below the ones that account for

all the fibers. Original curves and contraction free curves co-

incide only for a strong alignment of the fibers (high values

of b).

In the following section we prove that, by means of the

derivation of the PDF of I4, it is possible facilitate the satisfac-

tion of the stability condition in the calculations.

3.1. PDF of the fourth pseudo-invariant

The PDF of the uniaxial I4, Eq. (25), can be obtained by

computing the derivative with respect to � of the inverse re-

lation, Eq. (26), as

∂ I4

∂�
= 1 − λ3

λ
sin 2�,
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Fig. 4. Tridimensional distributions, uniaxial loading. Plot of I4(�) in Eq. (25) for � ∈ [0: π ] showing the admissible ranges of � accounting for extended fibers.

(a) Uniaxial contraction stretch, λ ≤ 1. (b) Uniaxial extension stretch, λ ≥ 1.
and plugging it into Eq. (16). The closed-form expression of

ρI4
(I4) for uniaxial loading follows as

ρI4(I4) = 1

NI4

λ√
λ3 − 1

√
λ I4 − 1

exp

[
b

(
2
λI4 − 1

λ3 − 1
− 1

)]
,

(28)

where NI4
(λ, b) is a normalization factor. Eq. (28) shows that

ρI4
(I4) is parametrized upon the applied stretch λ and the

concentration parameter b.

The double dependence is demonstrated in Fig. 7 by three

plots of ρI4
(I4), for different values of b and λ. The plots show

that ρI4
(I4) tends to flatten over a large portion of the support

when stretches are rather high. Fig. 7 visualizes the lower and

upper limits of integration of the function ρI4
(I4), located at

λ−1 and λ2, respectively. Shadowed zones highlight the inte-

gration range of I4 ≥ 1. Note that λ−1 is also a singular point of

the distribution: a vertical asymptote is present for any value

of the parameter b. For b � 1 the asymptote is not visible due

to negligible occurrences of the random variable. Contrari-

wise, λ2, is the absolute maximum value of the stretch under

uniaxial loading conditions. Between the two limit points,

the PDF of I4 is continuous and smooth. We take the two limit

points to define the full support DF ∈]λ−1, λ2[ of the ρI4
(I4).

It follows that the normalization factor of ρI4
(I4) is defined

as

NI4
=

∫
DF

λ√
λ3 − 1

√
λ I4 − 1

exp b

(
2
λ I4 − 1

λ3 − 1
− 1

)
dI4.

(29)

Remark 3.1A. The above discussion holds for uniaxial load-

ings in the mean direction of the fibers, and the resulting

PDF Eq. (28) does not discriminate between extended or con-

tracted fibers.

Remark 3.1B. The two limit points coincide with the eigen-

values of C, see Eq. (24), one of which has multiplicity 2. In

the case of uniaxial extension in the mean direction of the

fibers, the two identical eigenvalues correspond to contrac-

tions, and viceversa.
3.2. PDF of the anisotropic strain energy density

We use the previous results to derive the analytical ex-

pression of the PDF of the anisotropic strain energy density

� , ρ� (�), for the uniaxial loading case. The awareness of

the behavior of the strain energy density is of relevance in

assessing the reliability of the outcomes of numerical simu-

lations. Recalling the general property of probability distri-

butions, we can write

ρI4
(I4) dI4 = ρ�(Ψ ) dΨ . (30)

We refer to the particular exponential form of the anisotropic

strain energy density given in (2), and solve it with respect to

I4 obtaining

I4 = I4(�) = 1 +
√

1

k2

ln

(
1 + 2k2

k1

�

)
. (31)

We derive ρ� (�) in closed-form from Eq. (30) using the gen-

eral property of probability distributions as

ρ�(�) = ρI4(I4)

(
d�

dI4

)−1

= 1

N�

ρI4(I4)

k1(I4 − 1) exp
[
k2(I4 − 1)

2
] |I4=I4(�), (32)

where I4 has to be intended as a function of � in the form

(31), and N� (λ, b) is a normalization factor. As expected,

ρI4
(I4) and ρ� (�) share similar features. In particular, also

ρ� (�) depends on the von Mises concentration parameter

b and on the applied stretch λ. Representative examples of

ρ� (�) for different values of b and λ are visualized in Fig. 8.

The plots show that ρ� (�) does exist and is positive definite

only for � > 0. This observation is important for the defini-

tion of the requisite statistics of ρ� (�), which are meaning-

ful only when referred to the positive range of � .

Next, we wish to control the influence of ρI4
(I4) on

ρ� (�) to exclude detrimental effects on the convexity of the

anisotropic strain energy density, due to the presence of con-

tracted fibers. To this aim, we refer to the extension and con-

traction conditions discussed in the definition of the PDF of
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Fig. 5. Angle plane plots of I4(�, �) in the plane [�, �] ∈ [0: π , 0: 2π ]. (a) Tridimensional distributions, uniaxial loading, Eq. (25) with λ = 1.5; (b) Tridimensional

distributions, equibiaxial loading, Eq. (36) with λ1 = λ2 = 1.5; (c, d) Tridimensional distributions, biaxial loading Eq. (36) with λ1 = 1.5, λ2 = 1.1 and λ1 =
0.7, λ2 = 1.3, respectively; (e, f) Tridimensional distributions, shear loading Eq. (40) with γ = 0.4 and γ = 1.2, respectively. Color codes: red and blue for I4 ≥ 1

and I4 < 1, respectively. Black solid lines indicate the contour level I4 = 1. (For interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)
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Fig. 6. Tridimensional distributions, uniaxial loading. Comparison between the variables κ and κ̂ , Eqs. (10) and (21), respectively, computed for the full support � ∈ [0, π ] (F) and the ones computed for � in the range

accounting only for the extended fibers (E), see Eq. (27). (a–c) Variation versus λ for fixed values of the concentration parameter b = 0, 2, 8, respectively. (d) Variation versus b with respect to the stretch λ = 1.1, 1.2, 1.5,

respectively.
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Fig. 7. Tridimensional distributions, uniaxial loading. Examples of ρI4
(I4) versus I4, see Eq. (28), for three values of b = 0, 2, 8 and λ = 1.1, 1.2, 1.5. I4 is defined within the range ]λ−1, λ2[. The resulting PDFs flatten for

high values of the stretch and concentrate towards the upper bound for increasing values of b. The integration range of I4 ≥ 1 is highlighted as shadow zones.
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Fig. 8. Tridimensional distributions, uniaxial loading. Examples of ρ� (�) versus � , see Eq. (32), for three values of b = 0, 2, 8 and λ = 1.1, 1.2, 1.5. � is defined within the range ]0, �(λ2)[. The resulting PDFs flatten for

high values of the stretch and concentrate towards the upper bound for increasing values of b. In this case shadowed zones are not provided since the integration range starts from � = 0.
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I4. The function ρ� (�) in Eq. (32) must consider only the

physically admissible range of � which accounts for fibers

in extension, i.e., DE ∈]�(1) ≡ 0,�(λ2)[. Clearly, DE varies

with the assumed angular fiber distribution and the applied

stretch, but only in the upper limit of the support. Accord-

ingly, the normalization condition becomes

N� =
∫
DE

ρI4(I4(Ψ ))

k1(I4(Ψ ) − 1) exp

[
k2(I4(Ψ ) − 1)

2
] dΨ . (33)

The knowledge of the extension support DE permits the ex-

act evaluation of all the statistics related to � . In particular,

the average and the variance of � follow, with no approxi-

mations, as

〈�〉 =
∫
DE

ρ�(Ψ )Ψ dΨ , (34)

σ 2
Ψ = 〈� − �∗〉2 =

∫
DE

ρ�(Ψ )(Ψ − �∗)2
dΨ . (35)

Remark 3.2A. The exponential form of the strain energy

density allows to identify the unique inverse relation with

the fourth pseudo-invariant. Moreover, the monotonicity

of the exponential law allows to define ρ� (�) naturally

within the physical support corresponding to the range of the

extended fibres, where I4 ≥ 1.

Remark 3.2B. The knowledge of ρ� (�) in closed-form al-

lows for the exact evaluation of all its statistics, Eqs. (34)

and(35) in particular. We note that �∗ ≡ �(I∗
4
) �= 〈�〉.

4. General loadings for tridimensional fiber distributions

Under general loading conditions, the characterization of

the PDF of tridimensional distributions of fibers becomes

more difficult. Still restricting our considerations to the wide

class of transversely isotropic materials, we derive the ana-

lytical form of the PDF of I4 for general loadings making use

of the general transformation rule for random variables re-

called in Section 2.3. Additionally, we describe the PDF re-

lationships in terms of angle plane, and clarify the analyti-

cal derivation by means of plots comparison and numerical

calculations.

4.1. Biaxial loading

As in the uniaxial case, we take the direction e3 to be the

mean orientation of the fibers, and take it to coincide with

one of the principal directions of loading. A general biaxial

loading characterized by two stretches λ1 (in the mean fiber

direction) and λ2 (in the transversal plane) leads to the fol-

lowing deformation tensors

[F] =
[ 1

λ1λ2
0 0

0 λ2 0
0 0 λ1

]
, [C] =

⎡
⎣ 1

λ2
1
λ2

2

0 0

0 λ2
2 0

0 0 λ2
1

⎤
⎦.

In this case, the fourth pseudo-invariant (1) depends on both

the Euler angles � and �,

I4(�,�) = λ2
1 + F(λ1, λ2,�) sin

2 �, (36)
where

F(λ1, λ2,�)= 1

λ2
1
λ2

2

[
(1−λ2

1λ
4
2) cos2 �+λ2

1λ
2
2

(
λ2

2−λ2
1

)]
.

The criterion I4 ≥ 1, which discriminates between extended

and contracted fibres, does not lead to a straightforward

identification of the support DE of purely extended fibers.

The definition of DE requires, in this case, the composition

of the joint probabilities of � and �.

We try to visualize the complex relationship (36) through

the angle plane plots in Fig. 5(b–d). The contour levels of I4 =
I4(�,�) are reported for different values of the stretches. As

in the uniaxial case, also in this case, the eigenvalues of C are

the stationary points of I4, i.e., λ2
1
, λ2

2
, and 1/λ2

1
λ2

2
; according

to the applied stretch values they identify the absolute max-

imum, the local maximum, and the absolute minimum of I4.

The stability limit (I4 = 1) is visualized in Fig. 5 with a solid

black contour level. The shape of the stability contour level

changes markedly from a loading configuration to another,

testifying the difficulty in achieving an unified analytical de-

scription for the stability support DE. It follows that the a pri-

ori identification of the angular ranges satisfying the stability

condition I4 ≥ 1 becomes a complex problem dependent on

the stretch ratio λ2
2
/λ2

1
.

In order to bypass such a difficulty, following the pro-

cedure described in Section 2.3, we introduce an auxiliary

aleatoric variable W which coincides with the aleatoric vari-

able �. The inverse relation becomes

�(I4, W) = arcsin

√
I4 − λ2

1

F(λ1, λ2, W)
, (37)

and the derivative of I4 with respect to � is

∂ I4

∂�
= F(λ1, λ2, W) sin 2�. (38)

The integral form of the PDF of I4 under biaxial loading is

obtained by substituting (37) and (38) in Eq. (15), as

ρI4(I4) = 1

2π

1

N�

∫ 2π

0

exp (b cos 2θ)

2 cos θ F(λ1, λ2, w)

∣∣∣∣
θ=θ(I4,w)

dw,

(39)

where we implicitly assume the exclusion of the values

of w not satisfying the existence conditions of Eq. (37). This

result allows us to directly implement the stability condition

I4 ≥ 1 without the necessity of complex integral paths as de-

scribed for the angular PDFs.

The PDF in Eq. (39) is parametrized upon the concen-

tration parameter b, the stretches λ1, λ2, and the fourth

invariant I4. Representative examples of ρI4
(I4) for three

different values of b are shown in Fig. 9. As expected, in con-

trast with the previous case, the resulting PDF acquires more

complex morphologies according to the different sets of pa-

rameters. In particular, for very dispersed distributions of the

fibers (b � 0) and for extension–contraction combination of

stretches, the resulting PDF distributions are non-monotone

and show an intermediate peak. For high values of b, corre-

sponding to strongly aligned fiber distributions, the ρI4
(I4)

shows the same side peak observed in the uniaxial loading
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Fig. 9. Tridimensional distributions, biaxial loading. Examples of ρI4
(I4),

Eq. (39) for three values of the concentration parameter b = 0, 2, 8. The

stretches are set λ2 = 1.3, λ1 = 0.7 and correspond to the angle plane plot in

Fig. 5(d). A multimodal shape is observed for low values of b. The resulting

PDFs flatten and concentrate towards the lower bound for increasing values

of b. The integration range of I4 ≥ 1 is highlighted as shadow zones.
case. Nonetheless, the integration range of I4 ≥ 1 is similar

to the previous cases and highlighted by the shadowed

zones.

Remark 4.1A. Fig. 9 shows ρI4
(I4) for all the possible oc-

currences of I4, included the ones that do not satisfy the

stability condition I4 ≥ 1. The stability condition in terms

of the Euler angles is influenced by the specific values of

the applied stretches in a manner that cannot be rendered

explicitly. Also for the biaxial PDF, Eq. (39), in general, the sta-

bility condition I4 ≥ 1 can be enforced by limiting the support

of ρI4
(I4).

Remark 4.1B. In the case of shear loading characterized by a

parameter γ , the fourth invariant is expressed as

I4(�,�) = 1 + γ sin 2� sin � + γ 2 cos2 �. (40)

The functional relation (40) becomes intricate and character-

ized by closed regions where I4 ≥ 1, cf. Fig. 5(e,f). As it can

be grasped from the contour levels, in the simple shear load-

ing case the application of the general procedure for random

variable transformation becomes rather complicated. The full

analysis of the PDF of I4 requires the use of disjoint PDFs for

� and � and the recourse to advanced and dedicated com-

putational tools, which go beyond the aims of the present

work.

5. Planar fiber distributions

Next, we restrict our considerations to planar distribu-

tions of fibers, by specializing the distribution density ρ(a)

according to the approach described in Wang et al. (2012);

Vasta et al. (2014). We account for a π-periodic planar distri-

bution lying on the plane normal to the direction e , where
1
� = π/2, and, for the obvious symmetry ρ(a) = ρ( − a),
we limit � ∈ [−π/2, π/2]. It follows that ρ(a) = ρ�(θ) is

independent of the angle �. With no loss of generality,

we assume the mean direction of the fiber orientation to

coincide with the Cartesian basis vector e3, see Fig. 1(b). In

contrast with the three-dimensional case, in a planar setting

the quantity ρ�(θ )dθ represents the amount of fibers lying

in the direction �. The normalization condition (4) becomes

1

π

∫ π/2

−π/2

ρ�(θ)dθ = 1,

and the average operator is defined as

〈·〉 = 1

π

∫ π/2

−π/2

ρ�(θ)( · )dθ .

Furthermore, the unit vector a shows a dependence only on

the angle �

a(�) = sin � e2 + cos � e3,

as well as the structure tensor A

[A] =

⎡
⎣0 0 0

0 sin
2 � sin � cos �

0 sin � cos � cos2 �

⎤
⎦.

The average structure tensor has the explicit form

[H] =

⎡
⎣0 0 0

0 κ 0

0 0 1 − κ

⎤
⎦, (41)

where

κ = 1

π

∫ π/2

−π/2

ρ�(θ) sin
2 θ dθ, (42)

and the additional coefficient κ̂ accounting for higher order

terms becomes

κ̂ = 1

π

∫ π/2

π/2

ρ�(θ) sin
4 θ dθ (43)

cf. (Vasta et al., 2014; Wang et al., 2012). The planar distri-

bution allows to derive the explicit expressions for the PDF

under uniaxial and simple shear deformation. We remind

that, within a planar setting and under the incompressibility

constraint, the uniaxial loading corresponds to a pure shear

loading condition.

5.1. Uniaxial loading for planar distributions of fibers

We start by considering a uniaxial test in the plane e2–e3

of the fiber distribution, see Fig. 3(a). The deformation ten-

sors assume the form

[F] =

⎡
⎣1 0 0

0 1/λ 0

0 0 λ

⎤
⎦, [C] =

[
1 0 0

0 1/λ2 0

0 0 λ2

]
,

leading to the following expression of I4, i.e.,

I4(�) = 1

λ2
+

(
λ2 − 1

λ2

)
cos2 �. (44)
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(a) (b)

Fig. 10. Planar distributions, uniaxial loading. The stretch λ = 1.2 is applied for different values of the Mises concentration parameter b = 0, 2, 8. (a) Plot of

ρI4
(I4) versus I4, restricted to the range ]λ−2, λ2[ , see Eq. (46). The resulting PDFs show increased values of I4 for increasing values of b due to the enforcement of

the incompressibility constraint. (b) Plot of ρ� (�) versus � , restricted to the range ]0, �(λ2)[, see Eq. (47). The resulting PDFs of the energy show similar trends

to the one reported in Fig. 8 for three-dimensional distributions.
For a given λ, Eq. (44) can be solved with respect to � as

�(I4) = arccos

√
λ2 I4 − 1

λ4 − 1
.

The enforcement of the condition I4 ≥ 1 restricts the variabil-

ity of � to the ranges

− arccos
1√

1 + λ2
< � < arccos

1√
1 + λ2

for λ > 1,

− π

2
< � < − arccos

1√
1 + λ2

∪

arccos
1√

1 + λ2
< � <

π

2
for λ < 1 . (45)

The relation I4 = I4(�) for uniaxial loading for planar fiber

distributions is visualized in Fig. 11, where the shadowed re-

gions represent the ranges of � leading to fiber extension.

The kinematics of the uniaxial loading for planar distribu-

tions of fibers is very close to the one for tridimensional dis-

tributions shown in Fig. 4. In the planar setting, the increase

in the values of I4 derives from the enforcement of the in-

compressibility constraint. Consequently, the derivation of

the PDFs follows the same steps illustrated for tridimensional

distributions. The derivative of (44) with respect to � is, in

particular,

dI4

d�
=

(
1

λ2
− λ2

)
sin 2�.

The expression of the PDF of I4 under uniaxial loading in a

planar setting becomes

ρI4
= 1

NI4

λ2

2
√

λ4 − 1
√

λ2I4 − 1
exp

[
b

(
2
λ2I4 − 1

λ4 − 1
− 1

)]
,

(46)

and the PDF of � becomes

ρ� = 1

N�

ρI4(I4)

k1(I4 − 1) exp
[
k2(I4 − 1)

2
]
∣∣∣∣∣

I4=I4(�)

, (47)
where we assume I4 = I4(Ψ ) as in Eq. (31). NI4
(λ, b) and

N� (λ, b) are the normalization factors, corresponding to

Eqs. (29) and (33), respectively, in the case of tridimensional

distributions. Eq. (46) shows that ρI4
(I4) is parametrized

upon the applied stretch λ and the concentration param-

eter b of the von Mises distribution. As in the tridimen-

sional distribution case, the two limit points coincide with

the eigenvalues of the Cauchy–Green deformation tensor, i.e.,

λ−2 and λ2. Eqs. (47) and (32) have very similar functional

form, indeed, the only difference given by the expression

of the fourth pseudo-invariant PDF. In particular, ρ� (�) is

uniquely defined for � > 0; the support, accounting only for

the fibers in extension, is limited to �(λ2) in order to respect

the upper bound condition of ρI4
(I4). Illustrative examples

of ρI4
(I4) and ρ� (�) for planar distributions under uniaxial

loading for different values of the concentration parameter b

are shown in Fig. 10(a,b), respectively. The derivation of the

approximated average stress follows the steps described in

the previous section.

5.2. Simple shear loading in planar distributions of fibers

We conclude by analyzing the simple shear loading in the

plane of the fibers, see Fig. 3(b), characterized by the follow-

ing deformation tensors

[F] =
[

1 0 0
0 1 γ
0 0 1

]
, [C] =

[
1 0 0
0 1 γ
0 γ 1 + γ 2

]
.

The associated pseudo-invariant I4 is

I4(�) = 1 + γ sin 2� + γ 2 cos2 �. (48)

Relation (48) is visualized in Fig. 12. The ranges of � iden-

tifying extended fibers are uniquely defined by the intervals

− π

2
< � < arctan

γ

2
for γ < 0,

− arctan
γ

2
< � <

π

2
for γ > 0,

(49)

The derivative of the invariant (48) with respect to � is

dI4

d�
= 2γ cos 2� − γ 2 sin 2�.
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Fig. 11. Planar distributions, uniaxial loading. Plot of I4(�), Eq. (44), the admissible ranges of � are denoted by the shadowed regions.

Fig. 12. Planar distributions, simple shear loading. Plot of I4(�), Eq. (48), the admissible ranges of � are denoted by the shadowed regions.

E

For a given γ , the inversion of Eq. (48) can be done piecewise,

obtaining the two contiguous functions:

�1,2 = γ ±
√

γ 2I4 − (I4 − 1)2

I4 − 1
. (50)

Following the same analytical steps presented in the previous

sections, we reach closed-form expressions for the PDF of I4

and � in the simple shear case as

ρI4
(I4) = 1

NI4
(γ , b)

ρ�(θ)

2γ (cos2 θ − γ sin 2θ)
, (51)

where � is defined in Eq. (50), and

ρ�(Ψ ) = 1

N�(γ , b)

ρI4
(I4)

k1(I4 − 1) exp
[
k2(I4 − 1)

2
]
∣∣∣∣∣

I4=I4(Ψ )

,

(52)

where we assume I4 = I4(Ψ ) as in Eq. (31).
6. Numerical verification of the analytical results for

uniaxial loading

In the previous sections, for selected loading cases of rel-

evance in practical applications of transversely isotropic tis-

sues, we derived the analytical expression of the PDF of the

fourth pseudo-invariant and of the strain energy density.

Moreover, using approximated forms of the strain energy

density, we derived the analytical expression of the stress.

In this section, for the uniaxial loading case, we want

to establish a quantitative comparison between the fourth

pseudo-invariant, the strain energy density, and the stress

components computed considering only the fibers in exten-

sion and the ones computed considering also the contribu-

tion of fibers in contraction. When possible and significant,

in the calculations we alternate the use of the three PDFs,

ρ�(θ ), ρI4
(I4), ρ� (�), in the forms reported in Eqs. (23),

(28), and (32), respectively. We observe that replacing the

PDF in the definition of the fourth pseudo-invariant, strain

energy density, and average stress, leads to the same results

only when these quantities are computed over the support

D including only the fibers in extension.
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(a) (b)

Fig. 13. Tridimensional distributions, uniaxial loading, numerical validation. Plots of the average 〈I4〉, computed over the full support DF (F) and over the purely

extended fiber support DE (E). (a) 〈I4〉 versus stretch λ for fixed b. (b) 〈I4〉 versus b = 0, 2, 3 for fixed stretch λ = 1.1, 1.2, 1.5. The same curves are obtained using

ρ�(θ ) or ρI4
(I4). The full support underestimates the average value. The two integration schemes coincides for b � 1.

(a) (b)

Fig. 14. Tridimensional distributions, uniaxial loading, numerical validation. Semi-log plots of the variance σ 2
I4

= var(I4), computed over the full support DF and

over the purely extended fiber support DE. (a) σ 2
I4

versus the stretch λ for fixed values of the concentration parameter b = 0, 2, 8. (b) σ 2
I4

versus the concentration

parameter b for fixed stretches λ = 1.1, 1.2, 1.5. The full support overestimates the variance value. The two integration schemes coincides for b � 1.
Fig. 13 illustrates the behavior of the average pseudo-

invariant I∗
4
, Eq. (17), computed using either ρ�(θ ) or the PDF

in Eq. (16). The plots show I∗
4

versus the stretch λ for fixed

values of b, Fig. 13(a), and versus the concentration parame-

ter b for fixed values of λ, Fig. 13(b). The curves are computed

over the full support DF (open symbols, F) and over the pure

extension support DE (full symbols, E). When the contracted

fibers are excluded, I∗
4

assumes higher values; at high levels

of alignment all curves superpose, since all fibers experience

extension.

Fig. 14 shows the pseudo-invariant variance σ 2
I4

, see

Eq. (18), computed over the full support DF (open symbols, F)

and over the pure extension support DE (full symbols, E) us-

ing either ρ�(θ ) or the PDF in Eq. (16). The semi-log vari-

ance σ 2
I4

is plotted versus the stretch λ for fixed values of b,

Fig. 14(a), and versus the concentration parameter b for fixed

values of λ, Fig. 14(b). In all curves, σ 2
I4

computed consider-

ing only the fibers in extension assumes smaller values. The

maximum value for the variance is obtained for b � 1; for

high values of b all curves superpose and the restricted range

becomes meaningless, all fibers being in extension.
Fig. 15 compares the average strain energy density 〈�〉,

computed over the full support, DF, and over the pure ex-

tension support, DE, using the PDF in Eq. (32). Starting from

the Taylor expansion of Eq. (19), the energy associated to the

direction � is approximated at two different levels: (i) us-

ing the first order approximation, see Gasser et al., 2006; and

(ii) using the second order approximation, see (Vasta et al.,

2014). In the plots, the first and second approximation curves

are labeled with G and V, respectively. Fig. 15(a–c) show the

average strain energy density versus the stretch λ at fixed

values of b, and Fig. 15(d–f) show the average strain energy

density versus the concentration parameter b at fixed val-

ues of λ. The plots show that the second order approxima-

tion (solid line) is very accurate also in the case of dispersed

fibers (Vasta et al., 2014), and that the integration over the

full support leads to large errors in the case of very dispersed

fibers (open symbols). Furthermore, the difference between

the two approximations vanishes for high values of b, al-

though the imposed stretch has a strong influence on the me-

chanical response. Interestingly, averaging over ρ� (�) auto-

matically excludes the fibers in contraction.
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Fig. 15. Tridimensional distributions, uniaxial loading, numerical validation. Plots of the average 〈�〉, computed over the full support DF and over the purely extended fiber support DE comparing the first (G) and second

(V) order approaches. (a–c) 〈�〉 versus the stretch λ for fixed values of the concentration parameter b = 0, 2, 8. (d–f) 〈�〉 versus the concentration parameter b for fixed values of the stretch λ = 1.1, 1.2, 1.5. The full

support underestimates the average value of the energy both in the first and second order approach. The second order approach better approximates the integral conducted directly with ρ� (�). The approximations

coincides for b � 1.



A. Gizzi et al. / Mechanics of Materials 92 (2016) 119–138 135

(a) (b)

Fig. 16. Tridimensional distributions, uniaxial loading, numerical validation. Semi-log plots of the variance var(�) = 〈� − �∗〉2 of the approximated strain

energy density (a) versus stretch stretch λ for fixed values of the concentration parameter b = 0, 2, 8 and (b) versus b for fixed stretches λ = 1.1, 1.2, 1.5. Variance

increases with stretch and shows a peak for b � 2.
Fig. 16 visualizes the strain energy density variance σ 2
Ψ

,

Eq. (35), computed using the PDF in Eq. (32). The semi-log

plots show σ 2
Ψ

versus the stretch λ, Fig. 16(a), and versus the

concentration parameter b, Fig. 16(b). For an assigned b, σ 2
Ψ

increases with increasing λ; as expected, the magnitude of

the variance reduces with increasing b. The plot of σ 2
Ψ

versus

b for an assigned λ is characterized by a maximum at b � 2

followed by a decreasing branch; the variance, though, is very

sensitive to the magnitude of the stretch.

The plots in Fig. 17 show 〈S33〉, the component in the load-

ing direction of the average stress tensor, versus the stretch

λ and the concentration parameter b, computed over the full,

DF, and the pure extension, DE, supports. The stress is eval-

uated according to the definition in Eq. (22), using the first

(G) and second (V) order approximations of the strain en-

ergy density. At low values of b the stress is very sensitive

to the chosen model, and the second order approximation

reproduces closely the exact average stress values. As ex-

pected, all the differences in the definition disappear at high

values of b.

7. Discussion

The mechanical characterization of soft materials rein-

forced with distributed fibers cannot rely on deterministic

approaches, which are often unsuitable and may lead to un-

realistic predictions. Statistical approaches offer the correct

tools to define the mechanical quantities necessary to obtain

predictive and reliable models in numerical applications.

In this study, we consider distributions of fibers in tridi-

mensional and planar settings, assuming radial symmetry

about the main direction of the fiber orientation, typical of

transversely isotropic materials. We restrict our attention

to material models dependent only on the fourth pseudo-

invariant I4, a sort of microstructure-based measure of the

local strain, corresponding to the square of the stretch in the

direction of the fibers. Clearly, the complexity of fibrous ma-

terials may require the use of additional pseudo-invariants,

such as I5 or I8 (Spencer, 1972), but in principle the present

discussion can be extended to include additional strain mea-

sures, provided that the ensuing mathematical complexity

can be worked through.
We begin from the hypothetically known and smooth PDF

of the fiber orientation distribution, ρ�(θ ), and, for load-

ing conditions of particular interest for transversely isotropic

materials, we derive analytically the expression of the PDF of

the fourth pseudo-invariant, ρI4
(I4), and of the strain energy

density, ρ� (�). The PDFs are smooth functions, continuous

and differentiable within the range of variability of the cor-

responding aleatoric variables, and characterized by a well

defined support. Nevertheless, the fact that fibers fail to con-

tribute to the material stiffness when in contraction imposes

a restriction on the admissible values of the fourth pseudo-

invariant, i.e., I4 ≥ 1. This restriction affects the definition of

the support of each PDF in a manner that depends unavoid-

ably on the loading conditions.

Under uniaxial loading, the distinction between the full

support and the support restricted to the fibers in pure ex-

tension leads to significant differences in the values of the

κ and κ̂ parameters that characterize first and second order

approximations of the strain energy density. Both parame-

ters are smaller if the pure extension range is considered, see

Fig. 6. Strongly aligned fibers, i.e., high values of b, deliver

smaller values of κ and κ̂ . The reduction of κ and κ̂ signi-

fies that the “active” portion of fibers contributing effectively

to the mechanical response is less dispersed than the whole

distribution of fibers. Another observation stems from the

definition of stretch, a quantity that by definition is positive.

Although all the contributions of the fiber bundles to I4 are

positive, in the case of full support the average operator in

Eq. (5) is applied to a wider domain. In the wider domain

fiber contributions assume values inferior to one, lowering

the value of the average fourth pseudo-invariant, see Fig. 13.

Likewise, also the component of the average stress in the di-

rection of the loading assumes higher values in the case of

restriction to the extended fibers.

Unfortunately, under general loading conditions it is not

straightforward to obtain an analytical expression of the pure

extension ranges, regardless to the fact that the mathemat-

ical basis for their definition is well understood (Holzapfel

and Ogden, 2015). Pure extension ranges might be evaluated

accurately through the analysis of the PDF of the strain en-

ergy density, ρ� (�), obviously only when the PDF is avail-

able in closed-form. In particular, ρ� (�) assumes a unique

closed-form definition only for the pure extension ranges,
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Fig. 17. Tridimensional distributions, uniaxial loading, numerical validation. Plots of the average 〈S33〉, Eq. (22), computed on the full support DF and on the extension support DE comparing the first (G) and second (V)

order approaches. (a–c) 〈S33〉 versus stretch stretch λ for fixed b = 0, 2, 8. (d–f) 〈S33〉 versus b for fixed stretch λ = 1.1, 1.2, 1.5. The average stress is underestimated by the full support. The two approaches coincides for

b � 1.
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i.e. I4 ≥ 1. The differences in κ , κ̂ , average energy, and av-

erage stress components vanish, in fact, if the pure extension

ranges are considered. It is worth to note that in the defini-

tion of ρ� (�), Eq. (32), any functional form of ρI4
(I4) can be

used. This possibility bestows the proposed formulation on a

wide spectrum of material models.

Although the application of general multiaxial loadings for

tridimensional distributions of fibers follows the same gen-

eral transformation rule for random variables, this does not

allow, in general, a handy derivation of analytical expressions

of the PDFs. Neverthless, it is always possible visualize the

dependence of I4 on the Euler angles � and � by means of

angle plane plots, see Fig. 5(b–f). The geometrical and topo-

logical complexity of the regions characterized by I4 ≥ 1 is a

forerunner of the complexity of the analytical procedure to

be carried out in order to obtain the desired PDFs. The PDF

of the fourth pseudo-invariant is obtained in closed form for

the general biaxial case, ρI4
(I4), Eq. (39). Due to the nonlin-

ear interplay between the two principal stretches, the ρI4
(I4)

possesses a non-monotonic behavior, see Fig. 9.

For planar distributions of the fibers, we obtained the

closed-form of the PDFs for uniaxial loading which can be di-

rectly compared with the corresponding case for tridimen-

sional fiber distribution. Differences between the two cases

leap out from the comparison of Fig. 7(b) and Fig. 10(a). When

the whole set of fibers lays on a plane, the contribution to a

load on this plane is obviously more relevant, thus justifying

the higher values reached by the PDFs.

8. Limitations and future perspectives

In this work, the generalized fourth invariant introduced

in Holzapfel and Ogden (2015) has been derived analytically

within a stochastic approach; a parametric study on the in-

fluence of the distribution parameter b and on the loading

stretch λ has been carried out. There are some advantages

in using an analytical formulation. For example, it is well

known that the stability condition commonly used for gen-

eralized structure tensor models, i.e., I∗4 > 1, can be satisfied

also in the presence of a portion of compressed fibers. Nev-

ertheless, for practical convenience in the absence of effec-

tive methods to exclude compressed fibers, this condition is

used as a “switch” in well known commercial finite element

software (Holzapfel and Ogden, 2015). The analytical defini-

tion of I4 permits to define the ranges of the spatial angle �

where the local condition I4 ≥ 1 is satisfied within the distri-

bution, providing the correct definition of the PDFs of I4 and

� . The closed-forms of ρI4
(I4) and ρ� (�) allow for the di-

rect and correct evaluation of the requisite statistics (average

and variance) of the fourth pseudo-invariant and of the strain

energy density.

The approach discussed here has the following merits.

(i) Enforcing the stability condition I4 ≥ 1 in terms of the

PDF of the Euler angles requires complex curvilinear inte-

grations (see Fig. 5). On the contrary, when the PDF of I4

is available, the integration is straightforward just consider-

ing the support of ρI4
(I4) for I4 ≥ 1. This result has obvious

important implications for the optimization of numeri-

cal schemes. (ii) The explicit derivation of the PDF of I4,

ρI4
(I4), requires in general a piece-wise inversion pro-

cedure. Although inversion could introduce analytic dif-
ficulties, the explicit knowledge of the PDF permits to

obtain its statistics up to any order, thus delivering a

wider information than the average. The availability of

higher order statistics opens the possibility to further ex-

tensions and applications to methods based on the use

of generalized high-order structure tensors. As remark-

able example, an interesting avenue has been recently

addressed in Cortes and Elliot (2014), where I4’s central

statistics of any order have been used. (iii) The additional

possibility to obtain the PDF of the energy, and eventually

the energy statistics, opens new and interesting perspectives

for novel generalized formulations.

The exact quantification of the distribution parameters is

instrumental for the statistical characterization of fiber re-

inforced material models and for the reliability of compu-

tational methods based on those models. As already men-

tioned, given their particular microstructure and individual

variability, biomaterials and biotissues do require a statistic

approach.

A possible extension of this study is the characteriza-

tion of the PDF for multi-axial loadings, that cannot be de-

rived in a handy analytical form, by means of advanced ad

hoc computational tools, e.g., Monte Carlo simulations. An-

other point that would merit some further investigation is

the achievement of a closed-form of the stress tensor. Its an-

alytical derivation involve complex integral derivatives with

a variable integration domain, thus requiring with additional

terms due to Leibniz integral rule, see e.g. (Vasta et al., 2014).

Finally, a valuable aspect of this study is that the discussed

approach can be directly generalized to any experimental-

based statistical distribution of fiber-reinforced materials. In

particular, multi-modal distributions, already identified in

numerous biological tissues, appear as optimal candidates.
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Appendix A. Fourth order tensor H

The fourth order structure tensor H is defined as (Pandolfi

and Vasta, 2012):

H = 〈A ⊗ A〉,
with non zero coefficients:

H1111 = H2222 = 3κ̂ ,

H3333 = 1 − 4κ + 8κ̂ ,

H1122 = H2211 = H1212 = H2121 = H1221 = H2112 = κ̂ ,

H2233 = H3322 = H2323 = H3232 = H2332 = H3223 = κ − 4κ̂ ,

H3311 = H1133 = H3131 = H1313 = H3113 = H1331 = κ − 4κ̂ .

Functions f, g in Eq. (22), with �∗ = �(I∗4), are defined as

f (I∗4, σ 2
I4
) = �∗

0..3∑
j

a j I∗4
j g(I∗4, σ 2

I4
) = �∗

0..2∑
j

b j I∗4
i
.
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The non zero coefficients of the second order stress tensor S

are (see Vasta et al., 2014):

a0 = −4k2 − 8σ 2
I4

2k3
2 − 12σ 2

I4
2k2

2 , b0 = 4k2 + 8k2
2 ,

a1 = 24σ 2
I4

2k3
2 + 12σ 2

I4
2k2

2 − 8k2
2 , b1 = −16k2

2,

a2 = 16k2
2 − 24σ 2

I4
2k3

2 , b2 = 8k2
2,

a3 = 8σ 2
I4

2k3
2 − 8k2

2.
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