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Abstract

The analysis of linear stability of a steady detonation wave is formulated for the first time at
the kinetic level in the frame of the Boltzmann equation extended to reacting gases. Within
this context and for a reversible reaction, the stability problem is carried out, in agreement
with most classical papers on gas detonation, through a normal mode approach for the one-
dimensional disturbances of the steady wave solution, and an acoustic radiation condition
at the final equilibrium as closure condition. The proposed modelling leads to an initial
value problem, constituted by the linearized reactive Euler equations in the perturbed shock
frame with related Rankine-Hugoniot conditions, which can be solved by means of a proper
numerical technique. An application is provided for an elementary bimolecular reaction.

AMS codes: 35B35; 76P05; 80A32; 82C40; 76P05.
Keywords: Boltzmann equation. Chemical reactions. Detonation solution. Linear stability.

1 Introduction

The differential system of reactive stability equations and Rankine-Hugoniot conditions for a
steady detonation wave arising in a reacting gas is deduced for the first time within the ki-
netic frame of the Boltzmann equation, and is solved for an elementary explosive reaction of the
Hydrogen-Oxygen chain, assuming an acoustic radiation constraint as closure condition [1]. The
proposed mathematical formulation is justified on the one hand by the knowledge of a kinetic
model of the steady wave [2], and on the other by the possibility of recovering a methodology
widely discussed in the hydrodynamical approaches to the detonation linear stability problem
[1, 3]. With respect to classical studies on detonation stability which mainly consider ideal
gases with one-step irreversible reaction governed by an Arrhenius kinetics to model the com-
bustion process, the kinetic device has the advantage of working with a more detailed chemistry
mechanism, providing also a mesoscopic picture of the rather complex phenomenology.

In Sections 2, 3 and 4 the relevant mathematical and chemical features of the kinetic model
related to the gas description [4], to the governing equations and to the detonation wave structure
[2, 5], respectively, are reviewed and interpreted in order to justify the formulation of the stability
problem proposed in the modelling of Section 5.
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The actual solution to the initial value problem consisting of the stability equations and
related Rankine-Hugoniot conditions, together with a pertinent closure condition is solved for
the application dealt with in Section 6.

2 Kinetic and chemical preliminaries

A mixture of constituents Ai, i = 1, . . . , 4, undergoing the chemical reaction A1 +A2 
 A3 +A4,
with molecular masses such that m1 + m2 = m3 + m4 and binding energy difference E =
E3 + E4 − E1 − E2 > 0 is described by means of the kinetic model of paper [4] which is here
revisited in view of the formulation of the stability problem of Section 5.

Reactive Boltzmann equation. The microscopic state of the mixture is defined by the one–particle
distribution function fi(t,x,v), t ∈R+, x ∈R3, v ∈R3, for constituent Ai, which satisfies the
extended Boltzmann equation

∂fi
∂t

+ v · ∇fi = Qi[f ] +Ri[f ], i = 1, . . . , 4, (1)

where f = (f1, f2, f3, f4) and Qi[f ], Ri[f ] are the collision terms referred to elastic scattering
and inelastic collisions with chemical reaction, respectively, whose form is detailed only for some
of them, R2[f ] being analogous to R1[f ], and R4[f ] to R3[f ],

Qi[f ] =
4∑
j=1

∫
R3

∫
S
V Iijij fi(vij)fj(wij)dΩ′dw − fi(v)

∫
R3

∫
S
V Iijij fj(w)dΩ′dw, (2a)

R1[f ] =
(µ12

µ34

)3
∫

R3

∫
S
V I34

12f3(v1)f4(w1)dΩ′dw − f1(v)
∫

R3

∫
S
V I34

12f2(w)dΩ′dw, (2b)

R3[f ] =
(µ34

µ12

)3
∫

R3

∫
S
V I12

34f1(v3)f2(w3)dΩ′dw − f3(v)
∫

R3

∫
S
V I12

34f4(w)dΩ′dw, (2c)

with S unit sphere in R3, Iijij symmetric differential scattering cross sections, I34
12 , I

12
34 reactive

cross sections for the forward and backward reaction, depending on relative pre and post collision
velocities V and V ′ with unit vectors Ω and Ω′; µij =mimj/(m1+m2); vij ,wij and v,w post-
collision velocities of elastic and reactive interactions, depending on the incoming velocities.

Properties of the collision terms and equilibrium conditions. The mathematical and chemical
aspects of the collision terms and equilibrium conditions are here focused in Properties 1-8. The
proof of Properties 1-7 is omitted (see Ref. [4]).

Property 1 The elastic collision terms are such that
∫

R3

Qi[f ]dv = 0.

Conservation of constituent number density ni=
∫

R3

fi dv during elastic collisions is thus assured.

Property 2 For the collision invariants ψi(v)=mi, miv, Ei +miv
2/2, it holds

4∑
i=1

∫
R3

ψi(v)
(
Qi[f ] +Ri[f ]

)
(v) dv = 0. (3)
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Collision terms are then consistent with conservation of mass, momentum and total energy.

Property 3 The reactive collision terms fulfill the following equalities∫
R3

R1[f ](v) dv =
∫

R3

R2[f ](v) dv = −
∫

R3

R3[f ](v) dv = −
∫

R3

R4[f ](v) dv. (4)

Therefore the reactive terms link the consumption rate of reactants to the formation rate of
products, and, at the same time, assure the correct chemical exchanges predicted by the reaction.

Property 4 For the chemical exchange rates τi defined by τi=−νi
∫

R3

R1[f ](v) dv, with stoi-

chiometric coefficients ν1 = ν2 = −ν3 = −ν4 = −1, it holds τ1 = τ2 = −τ3 = −τ4.

The correct link among the exchange rates of both reactants and products is thus assured.

Property 5 The rate τ1 splits in τ1 =τf − τb, with forward and backward rates given by

τf =
(µ12

µ34

)3
∫

R3

∫
R3

∫
S
V I12

34 (V,Ω,Ω′)f3(v1)f4(w1)dΩ′dwdv, (5a)

τb =
∫

R3

∫
R3

∫
S
V I12

34 (V,Ω,Ω′)f1(v)f2(w)dΩ′dwdv. (5b)

The form of τ1 due to Eq. (2b) shows the detailed balance of source and sink terms of the
chemical interactions, coherently with its classical definition (see Ref. [6]).

Property 6 The equilibrium condition Qi[f ] +Ri[f ] = 0, for i = 1, . . . , 4, is equivalent to the
the vanishing of both elastic and reactive collision terms, namely Qi[f ] = 0 and Ri[f ] = 0.

The vanishing of Qi[f ] means that elastic collisions proceed without modifying the distribution
fi, thus a state of mechanical equilibrium is reached. The vanishing of Ri[f ] means that reacting
interactions occur without varying fi, as well, and thus a state of chemical equilibrium is defined.

Property 7 The mechanical equilibrium is assured by the Maxwellian distributions

f̃i(v) = ni

(
mi

2πkBT

)3/2
exp

(
−mi(v − u)2

2kBT

)
, (6)

with uncorrelated ni. The chemical equilibrium is characterized by Maxwellians (6) constrained
by (m3m4)3f̃1(v)f̃2(w) = (m1m2)3f̃3(v1)f̃4(w1), which is equivalently to the mass action law

neq
1 n

eq
2

neq
3 n

eq
4

=
(m1m2

m3m4

)3/2
exp

( E

kBT

)
. (7)

3



Above, kB is the Boltzmann constant, neq
i the equilibrium number density, u and T the mean

velocity and temperature. Equation (7) reproduces the mass action law of chemical kinetics.

An equilibrium description more pertinent to the chemical kinetics is based on the affinity [6]
which gives a measure of the distance of the gas system from the chemical equilibrium, that is

A = −
4∑
i=1

νiµi, µi = Ei − kBT
[

3
2

lnT − lnni +
3
2

ln
(

2πmikB
h2

)]
, (8)

h being the Planck constant, and µi the chemical interaction potential when the gas molecules
are endowed with translational degrees of freedom only. If A=0, the chemical equilibrium reads

µeq
1 + µeq

2 = µeq
3 + µeq

4 . (9)

Property 8 The kinetic form of the affinity is A = kBT ln
(
n1n2n

eq
3 n

eq
4

n3n4n
eq
1 n

eq
2

)
and the chemical

equilibrium condition A = 0 is equivalent to the mass action law (7).

Proof. Note first that the kinetic form of A is obtained from the stoichiometric definition (8)1
with chemical potentials (8)2, and from Eq. (7) for the mass ratio. In the second statement, the
necessary condition follows from the stoichiometric and kinetic definitions of A inserting Eqs.
(8)2 and (9). The sufficiency is proved casting Eqs. (8)2 and (7) into Eq. (8)1.

Reaction rate. The gas chemical composition is specified by the progress variable of the model,
say n1, since A1 is a product of the exothermic reaction, increasing from 0 when A1 is absent, to
the equilibrium value neq

1 , according to the irreversible entropy behaviour. The rate equation of
the model, obtained integrating the kinetic equation (1) over the velocity v, gives the evolution
of n1, dn1/dt(x, t) = τ1(x, t) where d/dt is the Lagrangian derivative and τ1, defined in Property
5, is the reaction rate. When τ1 = 0, the concentration of each constituent is then constant due
to Property 3. In a flow regime close to chemical equilibrium the distributions are assumed
Maxwellian given by Eqs. (6). Adopting the reactive cross sections of paper [7], inserting the
Maxwellians (6) into Eqs. (5a-b) and performing the integrations, the reation rate τ1 becomes

τ̃1 =
[
− %1%2

(m3m4

m1m2

)5/2
exp

(
− E

kBT

)
+ %3%4

]
Ŝ, (10)

where Ŝ is a weight function depending on temperature and threshold velocity (see Ref. [5]).

3 Macroscopic governing equations

In this section the reactive Euler equations are deduced in the form suitable for the stability
analysis of Section 5 and, due to Proposition 1, in the more conservative form convenient to
treat the velocity problem of the steady detonation wave of Section 4.

Macroscopic observables. The macroscopic observables are defined in terms of the distribution
functions by the equalities
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%i=
∫
mifidv, %iu

i
k=
∫
mivkfidv, with % =

4∑
i=1

%i, n=
4∑
i=1

ni, %uk=
4∑
i=1

%iu
i
k, (11a)

P ikl =
∫
mi(vk − uk)(vl − ul)fi dv , with Pkl =

4∑
i=1

P ikl, (11b)

pi =
1
3

∫
mi(v − u)2fi dv, Ti=

pi
nikB

, with p =
4∑
i=1

pi, T =
4∑
i=1

ni
n
Ti =

p

nkB
, (11c)

qik =
∫

1
2
mi(v − u)2(vk − uk)fi dv, with qk =

4∑
i=1

[
qik + Eini(uik − uk)

]
. (11d)

The mixture observables, %, n, p, T and uk, Pkl, qk, are the mass density, total number density,
pressure, temperature and components of mean velocity, pressure tensor, heat flux. The cor-
responding quantities of each constituent are denoted by the same symbols with index i. The
term Eini(uik−uk) in expression (11d)2 refers to the formation energy transfer due to diffusion.

Balance equations. The macroscopic equations for constituent mass densities, momentum and
total energy of the whole mixture are obtained from the Boltzmann equation (1) in the form

∂%i
∂t

+∇(%iui) = miτi, i = 1, . . . , 4, (12a)

∂

∂t
(%u) +∇(%u⊗ u+ P) = 0, (12b)

∂

∂t

(3
2
nkBT +

4∑
i=1

niEi +
1
2
%u2

)
+∇

[
q + Pu+

(3
2
nkBT +

4∑
i=1

niEi +
1
2
%u2

)
u
]

= 0, (12c)

where P is the mixture pressure tensor with components Pkl and τi is the reaction rate.

Proposition 1. The four evolution equations (12a) are equivalent to the set

∂%1

∂t
+∇(%1u1) = m1τ1, (13a)

∂

∂t
(n1 + n3) +∇(n1u1 + n3u3) = 0, (13b)

∂

∂t
(n1 + n4) +∇(n1u1 + n4u4) = 0, (13c)

∂

∂t
(n2 + n3) +∇(n2u2 + n3u3) = 0. (13d)

Proof. To deduce Eqs. (13a-d) it is sufficient to divide Eqs. (12a) by mi and sum them
separately for i = 1, 3, for i = 1, 4, and for i = 2, 3, respectively, taking into account Property 4.
Conversely, linear combinations of Eqs. (13a-d) allow to deduce the evolution equations (12a).
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Reactive Euler equations. Referring the set (12a-c) to the Maxwellians (6) and performing some
algebraic manipulations, the one-space dimensional reactive Euler (RE) equations become

∂%i
∂t

+ u
∂%i
∂x

+ %i
∂u

∂x
= −miνiτ̃1, i = 1, . . . , 4, (14a)

∂u

∂t
+ u

∂u

∂x
+

1
%

∂p

∂x
= 0,

∂p

∂t
+ u

∂p

∂x
+

5
3
p
∂u

∂x
= η, (14b)

where η = 2
4∑
i=1

νiEi τ̃1/3 = 2Eτ̃1/3. Their matrix form, which will be useful in Section 5, is

∂z

∂t
+A(z)

∂z

∂x
= c(z), (15)

with z=
[
%1 %2 %3 %4 u p

]T the unknown state vector and non-zero elements of A and c given by

Aii=u, Ai5 =%i, i=1, . . . , 4, A56 =1/%, A65 =5p/3, ci=−νimi τ̃1, i=1, . . . , 4, c6 =η. (16)

Remark 1 A more conservative form of Eqs. (14a-b), which will be adopted in Section 4, can
be written substituting Eqs. (14a) by Eqs. (13a-d) in one dimension and Eq. (14b)2 by

∂

∂t

(
3
2
nkT +

4∑
i=1

niEi +
1
2
%u2

)
+

∂

∂x

[
pu+

(
3
2
nkBT+

4∑
i=1

niEi +
1
2
%u2

)
u

]
= 0. (17)

4 Steady detonation waves

The one–dimensional steady detonation with chemical reaction of reversible bimolecular type
can be well described also within the kinetic frame, resorting to the so called znd model, due
to Zeldovich, von Neumann and Doering [9] extended to reversible reactions. The structure of
the znd detonation wave is represented in Fig. 1. The lead element is a non-reactive shock wave
propagating with constant velocity D, from the left to the right towards an unreacted quiescent
gas mixture followed by a finite reaction zone connecting the von Newmann state N , where the
exothermic reaction is triggered, to the final equilibrium state S. Inside this zone, the explosive
mixture is in strong chemical disequilibrium but
in mechanical equilibrium [5]. The passage of
the gas particles through the shock raises the
pressure, density and temperature to very high
values, so that a chemical reaction starts and
proceeds in the reaction zone behind the shock.
The following flow, which can be either a con-
stant state (overdriven detonation) or a rar-
efaction followed by a constant state (unsup-
ported detonation), connects the equilibrium fi-
nal states at the end of the reaction zone to the
rear boundary. All intermediate states of partial
reaction are represented by R, and the initial
state, ahead of the wave, where the mixture is

Figure 1: ZND Model for a detonation wave.
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at rest in absolute equilibrium with negligible reaction rate, is denoted by I. Moreover xB refers
to the rear boundary, xS , xR and x0 to the final, intermediate and initial states, respectively.
Some modeling aspects of the velocity problem are presented.

Steady governing equations. The RE equations, in the more conservative form of Remark 1, are
transformed in the steady frame attached to the shock, moving with velocity D, through the
transformation x∗=x−Dt, τ= t. Restoring x in place of x∗, their steady formulation is

(u−D)
d%1

dx
+ %1

du

dx
= m1τ̃1, (18a)

(u−D)
d

dx
(n1 + n3) + (n1 + n3)

du

dx
=0, (u−D)

d

dx
(n1 + n4) + (n1 + n4)

du

dx
=0, (18b)

(u−D)
d

dx
(n2 + n3) + (n2 + n3)

du

dx
= 0, (u−D)

du

dx
+

1
%

dp

dx
= 0, (18c)

(u−D)
d

dx

(3
2
nkT+

4∑
i=1

niEi+
1
2
%u2
)

+
(3

2
nkT+

4∑
i=1

niEi+
1
2
%u2
)du
dx

+
d

dx
(pu) = 0. (18d)

The Rankine–Hugoniot (RH) conditions, which typically connect the fluxes of independent
macroscopic observables preserved across the shock, constitute jump constraints on the state
variables %i, u, p between the initial state and an arbitrary state in the reaction zone. Accord-
ingly, the maximal set of steady conservative equations (18b-d) is integrated between the initial
state (subscript 0) and any state in the reaction zone (plain symbols),

(n1 + n3)(u−D) = −(n10 + n30)D, (n1 + n4)(u−D) = −(n10 + n40)D, (19a)

(n2 + n3)(u−D) = −(n20 + n30)D, (u−D)u
∑
i

mini + p = p0, (19b)

(u−D)
[
u2
∑
i

mini + 2
∑
i

Eini + 3p
]

+ 2pu = −
(

3p0 + 2
∑
i

Eini0

)
D. (19c)

Steady detonation structure. System (19a-c) will be solved to determine all N , R and S states
and the wave thickness, combining an RH analysis with the rate equation, as described below.

• Von Neumann state N . Upstream the shock, since the reaction is not yet initiated, the gas
chemical composition does not change across the shock and the progress variable n1 is preserved.
The rate equation (18a) turns out to be of conservative type, leading to the closure condition

n1(u−D) = −n10D. (20)

• Intermediate states R. Inside the reaction zone the evolution of the state variables depends
on the chemical process. The system (19a-c) is widened with the rate equation (18a) together
with its initial condition at the state N, specified by Eq. (20).

• Final state S. At the end of the reaction zone where τ1 = 0, S is characterized by system
(19a-c) completed by the chemical equilibrium condition, expressed by the mass action law (7).
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• Wave thickness. The length of the reaction zone, which corresponds to the distance between
the states N and S, can be computed integrating Eq. (18a) from N to S where τ̃1 = 0.

The picture of the detonation wave will be shown in Fig. 2 of Section 6, where the profile of a
selected state variable is shown and the wave thickness is plotted in the admissible range of D.

5 Linear stability problem

The detonation stability is classically studied assuming that a small rear boundary perturbation,
instantaneously assigned, induces a distortion on the steady planar shock wave which may either
decay with time or grow larger, whereas subsequent rear oscillations do not affect the shock
wave [8]. Therefore the shock distortion affects the steady character of the state variables in
the reaction zone so that the solution does not admit anymore a steady representation. The
response of the steady solution to these perturbations is central for the stability problem which
consists of the RE equations in the perturbed shock frame with related RH initial conditions,
linearized around the steady wave known from the previous section. The stability solutions
provide the behaviour of the state variable disturbances in the reaction zone.

Governing equations in the perturbed shock frame. The choice of such frame is justified since
it avoids the risk that hydrodynamic quantities ahead of the wave are exchanged with the
corresponding ones behind [9]. Let ψ(t) denote the position of the perturbed shock wave,
ψ(t) = Dt + ψ`(t), where D is the constant velocity of the unperturbed shock relative to the
laboratory frame, and ψ`(t) the distortion on the shock position, so that the perturbed velocity
is D(t) = D+ dψ`

dt (t). In the wave coordinate x which measures the distance from the perturbed
front, x = x` − ψ(t), the RE equations in the form (14a-c) transform to the system

∂%i
∂t

+
(
u−D − dψ`

dt

)
∂%i
∂x

+ %i
∂u

∂x
=−miνiτ̃1, i = 1, . . . , 4, (21a)

∂u

∂t
+
(
u−D − dψ`

dt

)
∂u

∂x
+

1
%

∂p

∂x
= 0,

∂p

∂t
+
(
u−D − dψ`

dt

)
∂p

∂x
+

5
3
p
∂u

∂x
=η, (21b)

or to a matrix form which will be more useful in the sequel

∂z

∂t
+
[
A(z)−

(
DI +

dψ`

dt

)
I

]
∂z

∂x
= c(z), (22)

where z, A, c are the same as in Eqs. (15) and (16). The RH conditions (19a-c) and (20),
re-written in terms of the state variables and in the wave coordinate, transform to(

u−D− dψ
`

dt

)
%i= −

(
D +

dψ`

dt

)
%i0,

(
u−D− dψ

`

dt

)
u
∑
i

%i + p = p0, (23a)(
u−D− dψ

`

dt

)[
u2
∑
i

%i+2
∑
i

Ei
mi
%i+3p

]
+2pu−

(
3p0+2

∑
i

Ei
mi
%i0

)(
D +

dψ`

dt

)
. (23b)

Equation (22) and initial conditions (23a-b) constitute the governing equations of the model.
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Normal mode analysis. The governing equations are linearized assuming that the shock distor-
tion and state variables perturbation have an exponential time dependence [3]. A normal mode
expansion about the steady solution approximates the state vector, the shock distortion and
their derivative as follows

z(x, t) = z∗(x) + exp(at) z(x), ψ`(t) = ψ exp(at), a, ψ ∈ C, a = α+ iβ, (24)

∂z

∂t
= a exp(at)z,

∂z

∂x
=
dz∗

dx
+ exp(at)

dz

dx
,

dψ`

dt
= aψ exp(at), (25)

where z=
[
%1 %2 %3 %4 u p

]T, the bar means unknown disturbances, the star denotes the known
steady state, Re a and Im a represent the perturbation growth rate and frequency. The sign of
Re a determines the stability behaviour of the steady solution.

Linearized RE equations in the wave coordinate. Inserting expansions (24) and (25) in Eqs.
(21a-b) the linearized equations for the perturbations z are written as

(A∗ −DI)
dz

dx
+ (aI + C∗) z − ab∗ψ = 0, (26)

where A∗=A(z∗), b∗=
dz∗

dx
=
[
d%∗1
dx

d%∗2
dx

d%∗3
dx

d%∗4
dx

du∗

dx

dp∗

dx

]T

, and C∗ is a matrix defined in

terms of z∗, whose non-zero elements are

C∗ij =δij
du∗

dx
− νimiŜ

∗%∗hΘ, j = 1, 2, C∗ij =δij
du∗

dx
+ νimiŜ

∗%∗h, j = 3, 4, i = 1, . . . , 4,

C∗5j =
u∗ −D
%∗

du∗

dx
, j = 1, . . . , 4, C∗i5 =

dz∗i
dx

, i = 1, . . . , 6,

C∗6j =
2E
3
Ŝ∗%∗hΘ, j = 1, 2, C∗6j =−2E

3
Ŝ∗%∗h, j = 3, 4, C∗66 =

5
3
du∗

dx
.

Above, δij is the Kronecker symbol, the index h is such that h = 2, 1, 4, 3 when j = 1, 2, 3, 4,

respectively, and Θ=
(
m3m4
m1m2

)5/2
exp

(
−n∗E

p∗

)
.

Linearized RH initial conditions in the wave coordinate. The initial conditions to be joined to
the differential Eqs. (26 ) relate the value of the disturbances zn behind the shock to their zero
value at the initial state ahead. The linearization of the RH conditions (19a-b) and (20) trough
expansions (24) and (25)3 lead to

(A∗n −DI) zn = aψ (K∗nz
∗
n − z0 ) , (27)

where z0 = [%10 %20 %30 %40 0 p0]T is the state vector in the initial state I and the non-zero
elements of K∗n are

K∗ii = 1, i = 1, 2, 3, 4, 6, K∗55 =
∑
i

%i0/
∑
i

%i
∗
N
, K∗65 = −

∑
i

%i0u
∗
N
/3.
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Stability problem and its determinacy. Equations (26) and (27) can be re-written avoiding the
dependence of z and zn on the complex parameter ψ through the normalization ζ = z/ψ, as

(A∗ −DI)
dζ

dx
+ (aI + C∗) ζ − ab∗ = 0, x ∈ [xn, xeq], (28)

ζn = a(A∗n −DI)−1 (K∗nz
∗
n − z0 ) . (29)

They constitute the stability system for the detonation wave in 12 unknowns Re ζ and Im ζ,
which in general is not closed since the complex parameter a is a priori unknown. In paper
[1] a closure condition has been rigorously derived for two-dimensional perturbations, and has
been proven to be equivalent to the physical requirement of the acoustics radiation condition
for inert flows, originally derived in paper [10]. This constraint, traditionally used in detonation
literature, expresses the physical condition for wich no waves emanate from the boundary to
interfere with the steady character of the lead shock, so that the reaction zone is acoustically
isolated from the following flow. Accordingly, observing that at the equilibrium the gas behaves
like an inert flow, the closure condition is obtained as

ζ5 + a =
−1

γ%∗eqc
∗
eq

ζ6 , for x = xeq. (30)

where c∗eq is the isentropic sound speed and %∗eq the gas density at equilibrium, and γ the ratio
of specific heats.

Solution technique. The stability problem (28), (29) and (30) is now treated numerically to
compute complex eigenvalues a and eigenfunctions ζ, applying a technique detailed as follows.

• For several values of a in a bounded domain of the right complex half-plane, Eqs. (28) are
integrated with initial conditions (29), using a fourth order Runge-Kutta routine.

• The solution ζ(x), x ∈ [xn, xeq], obtained for trial values of a is specialized for x = xeq to
estimate the residual function |H(a)|, with H(a) defined from the radiation condition (30) as

H(a) = ζ5 + a+
1

γ%∗eqc
∗
eq

ζ6 . (31)

• Only those solutions ζ, for which |H(a)| results to be close to zero within an acceptable
tolerance, are taken into account for the stability analysis.

The eigenfunctions selected according to the last step allow to evaluate the influence of the
perturbations induced by the shock distortion on the steady solution z∗. It is enough to refer
the decomposition (24)1 to the stability solutions ζ, namely

z(x, t) = z∗(x) + exp(at) ζ(x) . (32)

If now σ(x) = Re, ζ(x), τ (x) = Im ζ(x), Γ = exp(at)ζ(x), the influence of the disturbances ζ on
z∗ is described by the behaviour of Re Γi, Im Γi, i = 1, . . . , 6. Therefore the real and imaginary
parts of the disturbances of the total mass density, pressure and mean velocity are provided by

4∑
i=1

ReΓi=eα t
4∑
i=1

(
σi(x) cosβt−τi(x) sinβt

)
,

4∑
i=1

ImΓi=eα t
4∑
i=1

(
σi(x) sinβt+τi(x) cosβt

)
,
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ReΓ5 =eα t
(
σ5(x) cosβt− τ5(x) sinβt

)
, Re Γ6 = eα t

(
σ6(x) cosβt− τ6(x) sinβt

)
, (33)

Im Γ5 = eα t
(
σ5(x) sinβt+ τ5(x) cosβt

)
, Im Γ6 = eα t

(
σ6(x) sinβt+ τ6(x) cosβt

)
.

In the next section, some results concerning the behaviour of the real disturbances are provided
within a picture of either stable or unstable modes. Conversely, the behaviour of the imaginary
disturbances is inspected for the neutral stability boundaries corresponding to α = 0.

6 Results and discussion

In this section, some simulations relative to both steady detonation wave and its linear stability
are developed for the elementary reaction of the Hydrogen-Oxygen chain, H2O + H 
 OH
+ H2. The initial state of the fresh unreacted mixture with number densities ni (in mol l−1),
temperature T (in K), and the reference data for the masses mi (in kgmol), scale factor θ of the
chemical collision frequency, threshold velocity χ (in ms−1) of interacting particles and binding
energy difference E (in J mol−1), are given by are

n1 = 0.03, n2 = 0.02, n3 = 0.10, n4 = 0.20, T = 298.15 ,

m1 = 0.018, m2 = 0.001, m3 = 0.017, m4 = 0.002, θ = 107, χ = 6851, E = 63311 .

Results on steady detonation. Applying the procedure outlined in Section 4, the velocity problem
has been solved on the basis of the description carried out in paper [5], for a detonation velocity
D=3500, greater than the Chapman-Jouguet velocity DJ =2973, 5, that is for an overdrive degre
f=D/DJ = 1.3854. The wave structure is represented by its thickness curve and number density
profile. In Fig.2 (left), the decaying behaviour of the wave thickness, zF, is shown versus f . In
Fig.2 (right), the total number density is represented versus the wave propagation coordinate.

Results on linear stability. The analysis of Section 5 is applied to the steady solution above
described. For a growth rate α=0.01 and disturbance frequency β=0.01, Fig.3 and Fig. 4 (left)
show the amplification in time of the unstable modes of the real parts of the disturbances, namely∑4

i=1 Re Γi, Re Γ5 and Re Γ6 for the von Neuman state (V N), an intermediate state (I) and the
equilibrium final state (F ). For sake of simplicity and having in mind their physical meaning
in terms of the macroscopic observables, such disturbances are labelled in the figures by %, u
and p, respectively. The pictures reveal that the amplitudes of ρ are greater at the von Neuman
state and smaller at the final state, the opposite occurs for p and u. The unstable picture is
completed by Fig.4 (right) where a further significant feature is put in evidence, confirming the
existence of perturbation modes more unstable for decreasing values of frequency β, at fixed
positive growth rate α=0.01. This behaviour is in agreement with some relevant results shown
in paper [3].

Conversely, a stability picture is exhibited in Fig.5 (left) where a rapid decay in time of the
perturbation amplitude of %, for different states within the reaction zone, is drawn for α=−0.01
and β=0.01. All other profiles rapidly converge to zero, showing a quite similar trend.

At conditions of neutral stability (α=0), Fig.5 (right) shows the trend to constant values of
the perturbations

∑4
i=1 Im Γi, Im Γ5 and Im Γ6, which are labelled with Im ξ, Im ξ5 and Im ξ6.
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Figure 2: Steady detonation solution – Decay of the wave thickness zF versus overdrive degree
(left) and profile of total number density n for f = 1.3854 (right).

Conclusions. The results obtained here with the above described simulations are in qualitative
agreement with those known in detonation literature concerning the one dimensional linear
stability, even though they should be considered a first attempt in kinetic theory which can be
extended to the case of bi-dimensional disturbances induced by a shock distortion of type ψ`(y, t).
Thus it seems promising to develop a more complete hydrodynamic stability analysis in order to
go deeper on the effects due to the heat release and activation energy of the chemical reaction.
Within kinetic modelling of reacting flows, the present study shows that it is possible to deduce
a correct mathematical formulation of the complex problem of the detonation stability. At the
same time, this work contributes to extend the spectrum of fluid hydrodynamic applications,
based on Boltzmann type equations, to the most relevant non equilibrium effects induced by
chemical reactions.
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