12 research outputs found

    On-surface synthesis of metal–organic frameworks: the critical role of the reaction conditions

    Get PDF
    Two different metal–organic frameworks with either a honeycomb or Kagome structure were grown on Cu(111) using para-aminophenol molecules and native surface adatoms. Although both frameworks are made up from the same chemical species, they are structurally different emphasizing the critical role being played by the reaction conditions during their growth. This work highlights the importance of the balance between thermodynamics and kinetics in the final structure of surface-supported metal–organic networks

    On-Surface Driven Formal Michael Addition Produces m-Polyaniline Oligomers on Pt(111)

    Get PDF
    On-surface synthesis is emerging as a highly rational bottom-up methodology for the synthesis of molecular structures that are unattainable or complex to obtain by wet chemistry. Here, oligomers of meta-polyaniline, a known ferromagnetic polymer, were synthesized from para-aminophenol building-blocks via an unexpected and highly specific on-surface formal 1, 4 Michael-type addition at the meta position, driven by the reduction of the aminophenol molecule. We rationalize this dehydrogenation and coupling reaction mechanism with a combination of in situ scanning tunneling and non-contact atomic force microscopies, high-resolution synchrotron-based X-ray photoemission spectroscopy and first-principles calculations. This study demonstrates the capability of surfaces to selectively modify local molecular conditions to redirect well-established synthetic routes, such as Michael coupling, towards the rational synthesis of new covalent nanostructures

    Effects of Albumin Treatment on Systemic and Portal Hemodynamics and Systemic Inflammation in Patients With Decompensated Cirrhosis

    Get PDF
    BACKGROUND & AIMS: We investigated the effect of albumin treatment (20% solution) on hypoalbuminemia, cardiocirculatory dysfunction, portal hypertension, and systemic inflammation in patients with decompensated cirrhosis with and without bacterial infections. METHODS: We performed a prospective study to assess the effects of long-term (12 weeks) treatment with low doses of albumin (1 g/kg body weight every 2 weeks), and high doses (1.5 g/kg every week), on serum albumin, plasma renin, cardiocirculatory function, portal pressure, and plasma levels of cytokines, collecting data from 18 patients without bacterial infections (the Pilot-PRECIOSA study). We also assessed the effect of short-term (1 week) treatment with antibiotics alone vs. the combination of albumin plus antibiotics (1.5 g/kg on day 1 and 1 g/kg at day 3) on plasma levels of cytokines in biobanked samples from 78 patients with bacterial infections included in a randomized controlled trial (INFECIR-2 study). RESULTS: Circulatory dysfunction and systemic inflammation were extremely unstable in many patients included in the pilot-PRECIOSA study; these patients had intense and reversible peaks in plasma levels of renin and interleukin 6 (IL6). Long-term high-dose albumin but not low-dose albumin was associated with normalization of serum level of albumin, improved stability of the circulation and left ventricular function, and reduced plasma levels of cytokines (IL6, GCSF, IL1RN, and VEGF) without significant changes in portal pressure. The immune-modulatory effects of albumin observed in the Pilot-PRECIOSA study were confirmed in the INFECIR-2 study. In this study, patients given albumin had significant reductions in plasma levels of cytokines. CONCLUSIONS: In an analysis of data from 2 trials (pilot-PRECIOSA study and INFECIR-2 study) we found that albumin treatment reduces systemic inflammation and cardiocirculatory dysfunction in patients with decompensated cirrhosis. These effects might be responsible for the beneficial effects of albumin therapy on outcomes of patients with decompensated cirrhosis. ClinicalTrials.gov no: NCT00968695 and NCT03451292

    Ascitis

    No full text

    On‐Surface Driven Formal Michael Addition Produces m

    No full text
    On-surface synthesis is emerging as a highly rational bottom-up methodology for the synthesis of molecular structures that are unattainable or complex to obtain by wet chemistry. Here, oligomers of meta-polyaniline, a known ferromagnetic polymer, were synthesized from para-aminophenol building-blocks via an unexpected and highly specific on-surface formal 1, 4 Michael-type addition at the meta position, driven by the reduction of the aminophenol molecule. We rationalize this dehydrogenation and coupling reaction mechanism with a combination of in situ scanning tunneling and non-contact atomic force microscopies, high-resolution synchrotron-based X-ray photoemission spectroscopy and first-principles calculations. This study demonstrates the capability of surfaces to selectively modify local molecular conditions to redirect well-established synthetic routes, such as Michael coupling, towards the rational synthesis of new covalent nanostructures
    corecore