439 research outputs found

    The 1991 Transitional Charter of Ethiopia: A New Application of the Self-Determination Principle

    Get PDF

    The 1991 Transitional Charter of Ethiopia: A New Application of the Self-Determination Principle

    Get PDF

    Laser-Cluster-Interaction in a Nanoplasma-Model with Inclusion of Lowered Ionization Energies

    Full text link
    The interaction of intense laser fields with silver and argon clusters is investigated theoretically using a modified nanoplasma model. Single pulse and double pulse excitations are considered. The influence of the dense cluster environment on the inner ionization processes is studied including the lowering of the ionization energies. There are considerable changes in the dynamics of the laser-cluster interaction. Especially, for silver clusters, the lowering of the ionization energies leads to increased yields of highly charged ions.Comment: 10 pages, 11 figure

    S-100 protein positive cells in nasopharyngeal carcinoma (NPC): absence of prognostic significance. A clinicopathological and immunohistochemical study of 40 cases

    Get PDF
    An immunohistochemical study of S-100 protein in 43 nasopharyngeal carcinomas (NPC) of known clinical evolution (33 primary and 10 metastatic) is presented. Sixty per cent of primary site cases as well as all metastatic forms showed S-100 protein positive cells intermingled with tumour cells. These S-100 positive elements were identified as Langerhans cells. No significant differences were found when correlating S-100 protein positivity and histological NPC variants, neither in age nor in sex of patients. Statistical analysis failed to demonstrate any positive correlation between S-100 protein reactivity and clinical survival

    Generation and physiological roles of linear ubiquitin chains

    Get PDF
    Ubiquitination now ranks with phosphorylation as one of the best-studied post-translational modifications of proteins with broad regulatory roles across all of biology. Ubiquitination usually involves the addition of ubiquitin chains to target protein molecules, and these may be of eight different types, seven of which involve the linkage of one of the seven internal lysine (K) residues in one ubiquitin molecule to the carboxy-terminal diglycine of the next. In the eighth, the so-called linear ubiquitin chains, the linkage is between the amino-terminal amino group of methionine on a ubiquitin that is conjugated with a target protein and the carboxy-terminal carboxy group of the incoming ubiquitin. Physiological roles are well established for K48-linked chains, which are essential for signaling proteasomal degradation of proteins, and for K63-linked chains, which play a part in recruitment of DNA repair enzymes, cell signaling and endocytosis. We focus here on linear ubiquitin chains, how they are assembled, and how three different avenues of research have indicated physiological roles for linear ubiquitination in innate and adaptive immunity and suppression of inflammation

    RNAseq Analyses Identify Tumor Necrosis Factor-Mediated Inflammation as a Major Abnormality in ALS Spinal Cord

    Get PDF
    ALS is a rapidly progressive, devastating neurodegenerative illness of adults that produces disabling weakness and spasticity arising from death of lower and upper motor neurons. No meaningful therapies exist to slow ALS progression, and molecular insights into pathogenesis and progression are sorely needed. In that context, we used high-depth, next generation RNA sequencing (RNAseq, Illumina) to define gene network abnormalities in RNA samples depleted of rRNA and isolated from cervical spinal cord sections of 7 ALS and 8 CTL samples. We aligned \u3e50 million 2X150 bp paired-end sequences/sample to the hg19 human genome and applied three different algorithms (Cuffdiff2, DEseq2, EdgeR) for identification of differentially expressed genes (DEG’s). Ingenuity Pathways Analysis (IPA) and Weighted Gene Co-expression Network Analysis (WGCNA) identified inflammatory processes as significantly elevated in our ALS samples, with tumor necrosis factor (TNF) found to be a major pathway regulator (IPA) and TNFα-induced protein 2 (TNFAIP2) as a major network “hub” gene (WGCNA). Using the oPOSSUM algorithm, we analyzed transcription factors (TF) controlling expression of the nine DEG/hub genes in the ALS samples and identified TF’s involved in inflammation (NFkB, REL, NFkB1) and macrophage function (NR1H2::RXRA heterodimer). Transient expression in human iPSC-derived motor neurons of TNFAIP2 (also a DEG identified by all three algorithms) reduced cell viability and induced caspase 3/7 activation. Using high-density RNAseq, multiple algorithms for DEG identification, and an unsupervised gene co-expression network approach, we identified significant elevation of inflammatory processes in ALS spinal cord with TNF as a major regulatory molecule. Overexpression of the DEG TNFAIP2 in human motor neurons, the population most vulnerable to die in ALS, increased cell death and caspase 3/7 activation. We propose that therapies targeted to reduce inflammatory TNFα signaling may be helpful in ALS patients

    Diet-Related Metabolites Associated with Cognitive Decline Revealed by Untargeted Metabolomics in a Prospective Cohort

    Get PDF
    Scope: Untargeted metabolomics may reveal preventive targets in cognitive aging, including within the food metabolome. Methods and results: A case-control study nested in the prospective Three-City study includes participants aged &65 years and initially free of dementia. A total of 209 cases of cognitive decline and 209 controls (matched for age, gen- der, education) with slower cognitive decline over up to 12 years are contrasted. Using untargeted metabolomics and bootstrap-enhanced penalized regression, a baseline serum signature of 22 metabolites associated with subsequent cognitive decline is identified. The signature includes three coffee metabolites, a biomarker of citrus intake, a cocoa metabolite, two metabolites putatively derived from fish and wine, three medium-chain acylcarnitines, glycodeoxycholic acid, lysoPC(18:3), trimethyllysine, glucose, cortisol, creatinine, and arginine. Adding the 22 metabolites to a reference predictive model for cognitive decline (conditioned on age, gender, education and including ApoE-ε4, diabetes, BMI, and number of medications) substantially increases the predictive performance: cross-validated Area Under the Receiver Operating Curve = 75% [95% CI 70-80%] compared to 62% [95% CI 56-67%]. Conclusions: The untargeted metabolomics study supports a protective role of specific foods (e.g., coffee, cocoa, fish) and various alterations in the endogenous metabolism responsive to diet in cognitive aging
    corecore