7,934 research outputs found

    Abstracts of NASA-ASRDI publications relevant to aerospace safety research

    Get PDF
    Abstracts covering the following areas are presented: (1) oxygen technology; (2) fire safety; (3) accidents/incidents; (4) toxic spills; (5) aircraft safety; (6) structural failures; (7) nuclear systems; (8) fluid flow; and (9) zero gravity combustion

    Hierarchical analysis of gravitational-wave measurements of binary black hole spin-orbit misalignments

    Full text link
    Binary black holes may form both through isolated binary evolution and through dynamical interactions in dense stellar environments. The formation channel leaves an imprint on the alignment between the black hole spins and the orbital angular momentum. Gravitational waves from these systems directly encode information about the spin--orbit misalignment angles, allowing them to be (weakly) constrained. Identifying sub-populations of spinning binary black holes will inform us about compact binary formation and evolution. We simulate a mixed population of binary black holes with spin--orbit misalignments modelled under a range of assumptions. We then develop a hierarchical analysis and apply it to mock gravitational-wave observations of these populations. Assuming a population with dimensionless spin magnitudes of χ=0.7\chi = 0.7, we show that tens of observations will make it possible to distinguish the presence of subpopulations of coalescing binary black holes based on their spin orientations. With 100100 observations it will be possible to infer the relative fraction of coalescing binary black holes with isotropic spin directions (corresponding to dynamical formation in our models) with a fractional uncertainty of ∼40%\sim 40\%. Meanwhile, only ∼5\sim 5 observations are sufficient to distinguish between extreme models---all binary black holes either having exactly aligned spins or isotropic spin directions.Comment: 12 pages, 9 figures. Updated to match version published in MNRAS as 10.1093/mnras/stx176

    Spatial quantum correlations in multiple scattered light

    Get PDF
    We predict a new spatial quantum correlation in light propagating through a multiple scattering random medium. The correlation depends on the quantum state of the light illuminating the medium, is infinite range, and dominates over classical mesoscopic intensity correlations. The spatial quantum correlation is revealed in the quantum fluctuations of the total transmission or reflection through the sample and should be readily observable experimentally.Comment: Reference adde

    Spin Squeezing with Coherent Light via Entanglement Swapping

    Full text link
    We analyze theoretically a scheme that produces spin squeezing via the continuous swapping of atom-photon entanglement into atom-atom entanglement, and propose an explicit experimental system where the necessary atom-field coupling can be realized. This scheme is found to be robust against perturbations due to other atom-field coupling channels.Comment: 6 pages, 10 figure

    Quantum random walk of two photons in separable and entangled state

    Full text link
    We discuss quantum random walk of two photons using linear optical elements. We analyze the quantum random walk using photons in a variety of quantum states including entangled states. We find that for photons initially in separable Fock states, the final state is entangled. For polarization entangled photons produced by type II downconverter, we calculate the joint probability of detecting two photons at a given site. We show the remarkable dependence of the two photon detection probability on the quantum nature of the state. In order to understand the quantum random walk, we present exact analytical results for small number of steps like five. We present in details numerical results for a number of cases and supplement the numerical results with asymptotic analytical results

    The geometry of a naked singularity created by standing waves near a Schwarzschild horizon, and its application to the binary black hole problem

    Get PDF
    The most promising way to compute the gravitational waves emitted by binary black holes (BBHs) in their last dozen orbits, where post-Newtonian techniques fail, is a quasistationary approximation introduced by Detweiler and being pursued by Price and others. In this approximation the outgoing gravitational waves at infinity and downgoing gravitational waves at the holes' horizons are replaced by standing waves so as to guarantee that the spacetime has a helical Killing vector field. Because the horizon generators will not, in general, be tidally locked to the holes' orbital motion, the standing waves will destroy the horizons, converting the black holes into naked singularities that resemble black holes down to near the horizon radius. This paper uses a spherically symmetric, scalar-field model problem to explore in detail the following BBH issues: (i) The destruction of a horizon by the standing waves. (ii) The accuracy with which the resulting naked singularity resembles a black hole. (iii) The conversion of the standing-wave spacetime (with a destroyed horizon) into a spacetime with downgoing waves by the addition of a ``radiation-reaction field''. (iv) The accuracy with which the resulting downgoing waves agree with the downgoing waves of a true black-hole spacetime (with horizon). The model problem used to study these issues consists of a Schwarzschild black hole endowed with spherical standing waves of a scalar field. It is found that the spacetime metric of the singular, standing-wave spacetime, and its radiation-reaction-field-constructed downgoing waves are quite close to those for a Schwarzschild black hole with downgoing waves -- sufficiently close to make the BBH quasistationary approximation look promising for non-tidally-locked black holes.Comment: 12 pages, 6 figure

    Directory of aerospace safety specialized information sources

    Get PDF
    Directory aids safety specialists in locating information sources and individual experts in engineering-related fields. Lists 170 organizations and approximately 300 individuals who can provide safety-related technical information in form of documentation, data, and consulting expertise. Information on hazard and failure cause identification, accident analysis, and materials characteristics are covered

    Discerning Aggregation in Homogeneous Ensembles: A General Description of Photon Counting Spectroscopy in Diffusing Systems

    Full text link
    In order to discern aggregation in solutions, we present a quantum mechanical analog of the photon statistics from fluorescent molecules diffusing through a focused beam. A generating functional is developed to fully describe the experimental physical system as well as the statistics. Histograms of the measured time delay between photon counts are fit by an analytical solution describing the static as well as diffusing regimes. To determine empirical fitting parameters, fluorescence correlation spectroscopy is used in parallel to the photon counting. For expedient analysis, we find that the distribution's deviation from a single Poisson shows a difference between two single fluor moments or a double fluor aggregate of the same total intensities. Initial studies were performed on fixed-state aggregates limited to dimerization. However preliminary results on reactive species suggest that the method can be used to characterize any aggregating system.Comment: 30 pages, 5 figure
    • …
    corecore