54 research outputs found

    Structure of microbial communities in Sphagnum peatlands and effect of atmospheric carbon dioxide enrichment

    Get PDF
    Little is known about the structure of microbial communities in Sphagnum peatlands, and the potential effects of the increasing atmospheric C02 concentration on these communities are not known. We analyzed the structure of microbial communities in five Sphagnum-dominated peatlands across Europe and their response to C02 enrichment using miniFACE systems. After three growing seasons, Sphagnum samples were analyzed for heterotrophic bacteria, cyanobacteria, microalgae, heterotrophic flagellates, ciliates, testate amoebae, fungi, nematodes, and rotifers. Heterotrophic organisms dominated the microbial communities and together represented 78% to 97% of the total microbial biomass. Testate amoebae dominated the protozoan biomass. A canonical correspondence analysis revealed a significant correlation between the microbial community data and four environmental variables (Na+, DOC, water table depth, and DIN), reflecting continentality, hydrology, and nitrogen deposition gradients. Carbon dioxide enrichment modified the structure of microbial communities, but total microbial biomass was unaffected. The biomass of heterotrophic bacteria increased by 48%, and the biomass of testate amoebae decreased by 13%. These results contrast with the absence of overall effect on methane production or on the vegetation, but are in line with an increased below-ground vascular plant biomass at the same sites. We interpret the increase in bacterial biomass as a response to a C02-induced enhancement of Sphagnum exudation. The causes for the decrease of testate amoebae are unclear but could indicate a top-down rather than a bottom-up control on their densit

    The effect of temperature on growth and competition between Sphagnum species

    Get PDF
    Peat bogs play a large role in the global sequestration of C, and are often dominated by different Sphagnum species. Therefore, it is crucial to understand how Sphagnum vegetation in peat bogs will respond to global warming. We performed a greenhouse experiment to study the effect of four temperature treatments (11.2, 14.7, 18.0 and 21.4°C) on the growth of four Sphagnum species: S. fuscum and S. balticum from a site in northern Sweden and S. magellanicum and S. cuspidatum from a site in southern Sweden. In addition, three combinations of these species were made to study the effect of temperature on competition. We found that all species increased their height increment and biomass production with an increase in temperature, while bulk densities were lower at higher temperatures. The hollow species S. cuspidatum was the least responsive species, whereas the hummock species S. fuscum increased biomass production 13-fold from the lowest to the highest temperature treatment in monocultures. Nutrient concentrations were higher at higher temperatures, especially N concentrations of S. fuscum and S. balticum increased compared to field values. Competition between S. cuspidatum and S. magellanicum was not influenced by temperature. The mixtures of S. balticum with S. fuscum and S. balticum with S. magellanicum showed that S. balticum was the stronger competitor, but it lost competitive advantage in the highest temperature treatment. These findings suggest that species abundances will shift in response to global warming, particularly at northern sites where hollow species will lose competitive strength relative to hummock species and southern species

    Microtopographic drivers of vegetation patterning in blanket peatlands recovering from erosion

    No full text
    Blanket peatlands are globally rare, and many have been severely eroded. Natural recovery and revegetation (‘self-restoration’) of bare peat surfaces are often observed but are poorly understood, thus hampering the ability to reliably predict how these ecosystems may respond to climatic change. We hypothesised that morphometric/topographic-related microclimatic variables may be key controls on successional pathways and vegetation patterning in self-restoring blanket peatlands. We predicted the occurrence probability of four common peatland plant species (Calluna vulgaris, Eriophorum vaginatum, Eriophorum angustifolium, and Sphagnum spp.) using a digital surface model (DSM) generated from drone imagery at a pixel size of 20 cm, a suite of variables derived from the DSM, and an ensemble learning method (random forests). All four species models provided accurate fine-scale predictions of habitat suitability (accuracy > 90%, area under curve (AUC) > 0.9, recall and precision > 0.8). Mean elevation (within a 1 m radius) was often the most influential variable. Topographic position, wind exposure, and the heterogeneity or ruggedness of the surrounding surface were also important for all models, whilst light-related variables and a wetness index were important in the Sphagnum model. Our approach can be used to improve prediction of future responses and sensitivities of peatland recovery to climatic changes and as a tool to identify areas of blanket peatlands that may self-restore successfully without management intervention

    A new sampler for extracting undisturbed surface peat cores for growth pot experiments

    No full text
    The sampler extracts uncompressed cores of 13.3 cm in diameter, up to 70 cm long, from the surface layers of peat. It has two close-fitting concentric cylindrical tubes, the outer one acting as a cutter and the inner one as a collector. As the outer tube is introduced by rotation into the peat, the cut core is collected in the inner tube which is maintained in a fixed position during the rotation phase and then pushed down stepwise. This limits friction between the peat core and the wall of the corer and prevents compression or distortion of the peat. These problems are also reduced by means of three skew cutters allowing the peat to be supported during the slicing action. Air can penetrate between the tubes to the lower end of the core, suppressing any suction effect during withdrawal. The sampler has been tested and has worked satisfactorily in many different peat types
    • …
    corecore