406 research outputs found
CRYPTO Project - What we found so far
ABSTRACT: The presence of non-indigenous species (NIS) is one of the greatest threats to marine biodiversity, presenting potential impacts not only on biodiversity, but also on the economy and public health. When a species is not evidently native or introduced, it is referred to as cryptogenic, an occurrence with consequences for understanding biological invasions. The subregion Azores, with 30% of the EU exclusive economic zone, has 26 species of macroalgae or 6% of its marine flora identified as NIS. This number may increase once the origin of 40 other species that are classified as cryptogenic is clarified. Since many potentially invasive species are currently categorized as cryptogenic, resolving their status is imperative to evaluate their ecological impact
and to develop management plans. The CRYPTO Project targets on assessing the origin, distribution and risk of potentially invasive algae, coupled with the application of DNA barcoding, phylogenetic reconstructions, haplotype networks and phylogeographic analyses, coupled with historical assessment and ocean modeling. This project shall contribute to address the EU Horizon 2020’s societal challenge “Climate action, environment, resource efficiency and raw materials”, aiming at the protection of the environment and the conservation of unique Azorean ecosystems. Preliminary results will be presented.info:eu-repo/semantics/publishedVersio
Multilocus phylogeny reveals <i>Gibsmithia hawaiiensis</i> (Dumontiaceae, Rhodophyta) to be a species complex from the Indo-Pacific, with the proposal of <i>G. eilatensis</i> sp. nov.
Gibsmithia hawaiiensis is a peculiar red alga characterized by furry gelatinous lobes arising from a cartilaginous stalk. The species has been recorded from tropical reef systems throughout the Indo-Pacific. A multilocus phylogeny (UPA, rbcL, COI-5P) of 36 specimens collected throughout the species distribution range, showed high genetic diversity at species level. Two major groups were identified, each consisting of multiple lineages. Genetic variability was low in the Hawaiian Islands and the northern Red Sea and high in the Western Indian Ocean and the Coral Triangle, where lineages overlap in distribution. Genetic distances suggest that G. hawaiiensis represents a complex of five cryptic species, with no difference observed in the external morphology corresponding to separate lineages. Anatomical and reproductive differences were observed at the microscopic level for the lineage from the Red Sea, which is here described as G. eilatensis sp. nov. The geographic range of the species complex is here expanded to include Madagascar, the Red Sea and the Indo-Malay region, and the generitype seems endemic to the Hawaiian Islands. Algal diversity on coral reef systems is discussed from a conservation perspective using G. hawaiiensis as an example
Deep-water macroalgae from the Canary Islands: new records and biogeographical relationships
Due to the geographical location and paleobiogeography of the Canary Islands, the
seaweed flora contains macroalgae with different distributional patterns. In this contribution, the biogeographical relations of several new records of deep-water macroalgae recently collected around the Canarian archipelago are discussed. These are Bryopsidella neglecta (Berthotd) Rietema,Discosporangium mesarthrocarpum (Meneghini) Hauck, Hincksia onslowensis (Amsler et Kapraun)P.C. Silva, Syringoderma floridana Henry, Peyssonnelia harveyana J. Agardh, Cryptonemia seminervis(C. Agardh) J. Agardh, Botryodadia wynnei Ballantine, Gloiocladia blomquistii (Searles) R. E.Norris, PIahchrysis peltata (W. R. Taylor) P. Huv4 et H. Huv4, Leptofauchea brasiliensis Joly, and Sarcodiotheca divaricata W. R. Taylor. These new records, especially those in the Florideophyceae,support the strong affinity of the Canary Islands seaweed flora with the warm-temperate Mediterranean-Atlantic region. Some species are recorded for the first time from the east coast of the Atlantic Ocean, enhancing the biogeographic relations of the Canarian marine flora with that of the western Atlantic regions
The Reinstatement Of Hydropuntia Montagne (Gracilariaceae, Rhodophyta)
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/149772/1/tax00982.pd
Novel Colicin F-Y of Yersinia frederiksenii Inhibits Pathogenic Yersinia Strains via YiuR-Mediated Reception, TonB Import, and Cell Membrane Pore Formation
A novel colicin type, designated colicin F-Y, was found to be encoded and produced by the strain Yersinia frederiksenii Y27601. Colicin F-Y was active against both pathogenic and nonpathogenic strains of the genus Yersinia. Plasmid YF27601 (5,574 bp) of Y. frederiksenii Y27601 was completely sequenced. The colicin F-Y activity gene (cfyA) and the colicin F-Y immunity gene (cfyI) were identified. The deduced amino acid sequence of colicin F-Y was very similar in its C-terminal pore-forming domain to colicin Ib (69% identity in the last 178 amino acid residues), indicating pore forming as its lethal mode of action. Transposon mutagenesis of the colicin F-Y-susceptible strain Yersinia kristensenii Y276 revealed the yiuR gene (ykris001_4440), which encodes the YiuR outer membrane protein with unknown function, as the colicin F-Y receptor molecule. Introduction of the yiuR gene into the colicin F-Y-resistant strain Y. kristensenii Y104 restored its susceptibility to colicin F-Y. In contrast, the colicin F-Y-resistant strain Escherichia coli TOP10F' acquired susceptibility to colicin F-Y only when both the yiuR and tonB genes from Y. kristensenii Y276 were introduced. Similarities between colicins F-Y and Ib, similarities between the Cir and YiuR receptors, and the detected partial cross-immunity of colicin F-Y and colicin Ib producers suggest a common evolutionary origin of the colicin F-Y-YiuR and colicin Ib-Cir systems
Full Sequence and Comparative Analysis of the Plasmid pAPEC-1 of Avian Pathogenic E. coli χ7122 (O78∶K80∶H9)
(APEC), are very diverse. They cause a complex of diseases in Human, animals, and birds. Even though large plasmids are often associated with the virulence of ExPEC, their characterization is still in its infancy., are also present in the sequence of pAPEC-1. The comparison of the pAPEC-1 sequence with the two available plasmid sequences reveals more gene loss and reorganization than previously appreciated. The presence of pAPEC-1-associated genes is assessed in human ExPEC by PCR. Many patterns of association between genes are found.The pathotype typical of pAPEC-1 was present in some human strains, which indicates a horizontal transfer between strains and the zoonotic risk of APEC strains. ColV plasmids could have common virulence genes that could be acquired by transposition, without sharing genes of plasmid function
Actions stimulantes spécifiques de certains bactériophages sur les activités microbiennes
info:eu-repo/semantics/publishe
- …