2,410 research outputs found
Recommended from our members
Searching for the missing mantles of disrupted asteroids: Evidence from an olivine-rich clast in the Vaca Muerta Mesosiderite
Markovian master equations for quantum thermal machines: local vs global approach
The study of quantum thermal machines, and more generally of open quantum
systems, often relies on master equations. Two approaches are mainly followed.
On the one hand, there is the widely used, but often criticized, local
approach, where machine sub-systems locally couple to thermal baths. On the
other hand, in the more established global approach, thermal baths couple to
global degrees of freedom of the machine. There has been debate as to which of
these two conceptually different approaches should be used in situations out of
thermal equilibrium. Here we compare the local and global approaches against an
exact solution for a particular class of thermal machines. We consider
thermodynamically relevant observables, such as heat currents, as well as the
quantum state of the machine. Our results show that the use of a local master
equation is generally well justified. In particular, for weak inter-system
coupling, the local approach agrees with the exact solution, whereas the global
approach fails for non-equilibrium situations. For intermediate coupling, the
local and the global approach both agree with the exact solution and for strong
coupling, the global approach is preferable. These results are backed by
detailed derivations of the regimes of validity for the respective approaches.Comment: Published version. See also the related work by J. Onam Gonzalez et
al. arXiv:1707.0922
The United Nations at Seventy-Five: Where Are the Women in The United Nations Now?
Following the unsuccessful attempt to get a woman appointed as UN secretary-general in 2016 and the drop in women in senior posts in 2015, it appeared that gender equality at the UN was as distant as ever. Yet, gender equality within the Secretariat and UN system has been on the organization's agenda since 1970, with goals and target dates set for the level of women's participation and achievement. These have been met in some issue areas (for example, in so-called feminine portfolios) and organizations, but not others. As part of the special issue on “The United Nations at Seventy-Five: Looking Back to Look Forward,” this essay traces the evolution of efforts to increase the representation of women in the UN system and takes stock of their current representation therein, analyzing the data on the Secretariat and appointments to senior posts as well as in various operations and programs
Galilean type IIA backgrounds and a map
We obtain non-relativistic AdS4 X CP3 solutions with dynamical exponent 3 in
type IIA string theory, both with and without Romans mass. The
compactifications to four dimensions are found to describe Proca fields in
anti-de Sitter spacetime. This leads us to conclude that the massive and
massless IIA theories should be identified in four dimensions and the Romans
mass should be identified with the `flux' along CP3 in a definite manner. From
supergravity point of view, it is suggestive of some four-dimensional symmetry
that rotates Romans mass into the flux along CP3. We also provide M-theory
Galilean ABJM background which gives rise to the nonrelativistic type IIA
solution.Comment: 10 pages;v2: major revisions, errors on supersymmetry corrected and
references added; to be published in MPL
Calabi-Yau Fourfolds with Flux and Supersymmetry Breaking
In Calabi-Yau fourfold compactifications of M-theory with flux, we
investigate the possibility of partial supersymmetry breaking in the
three-dimensional effective theory. To this end, we place the effective theory
in the framework of general N=2 gauged supergravities, in the special case
where only translational symmetries are gauged. This allows us to extract
supersymmetry-breaking conditions, and interpret them as conditions on the
4-form flux and Calabi-Yau geometry. For N=2 unbroken supersymmetry in three
dimensions we recover previously known results, and we find a new condition for
breaking supersymmetry from N=2 to N=1, i.e. from four to two supercharges. An
example of a Calabi-Yau hypersurface in a toric variety that satisfies this
condition is provided.Comment: 26 page
A History of BlockingQueues
This paper describes a way to formally specify the behaviour of concurrent
data structures. When specifying concurrent data structures, the main challenge
is to make specifications stable, i.e., to ensure that they cannot be
invalidated by other threads. To this end, we propose to use history-based
specifications: instead of describing method behaviour in terms of the object's
state, we specify it in terms of the object's state history. A history is
defined as a list of state updates, which at all points can be related to the
actual object's state.
We illustrate the approach on the BlockingQueue hierarchy from the
java.util.concurrent library. We show how the behaviour of the interface
BlockingQueue is specified, leaving a few decisions open to descendant classes.
The classes implementing the interface correctly inherit the specifications. As
a specification language, we use a combination of JML and permission-based
separation logic, including abstract predicates. This results in an abstract,
modular and natural way to specify the behaviour of concurrent queues. The
specifications can be used to derive high-level properties about queues, for
example to show that the order of elements is preserved. Moreover, the approach
can be easily adapted to other concurrent data structures.Comment: In Proceedings FLACOS 2012, arXiv:1209.169
Fluid dynamics of R-charged black holes
We construct electrically charged AdS_5 black hole solutions whose charge,
mass and boost-parameters vary slowly with the space-time coordinates. From the
perspective of the dual theory, these are equivalent to hydrodynamic
configurations with varying chemical potential, temperature and velocity
fields. We compute the boundary theory transport coefficients associated with a
derivative expansion of the energy momentum tensor and R-charge current up to
second order. In particular, we find a first order transport coefficient
associated with the axial component of the current.Comment: 31 pages, v2: published version; added some references, discussion of
the charge-current changed, results unchanged, v3: typo in formula (15)
changed, v4: added footnote 3 in order to clarify the relation of our results
to those of arXiv:0809.259
Observing Brane Inflation
Linking the slow-roll scenario and the Dirac-Born-Infeld scenario of
ultra-relativistic roll (where, thanks to the warp factor, the inflaton moves
slowly even with an ultra-relativistic Lorentz factor), we find that the KKLMMT
D3/anti-D3 brane inflation is robust, that is, enough e-folds of inflation is
quite generic in the parameter space of the model. We show that the
intermediate regime of relativistic roll can be quite interesting
observationally. Introducing appropriate inflationary parameters, we explore
the parameter space and give the constraints and predictions for the
cosmological observables in this scenario. Among other properties, this
scenario allows the saturation of the present observational bound of either the
tensor/scalar ratio r (in the intermediate regime) or the non-Gaussianity f_NL
(in the ultra-relativistic regime), but not both.Comment: 31 pages, 12 figures; typo correcte
String Loop Corrections to Kahler Potentials in Orientifolds
We determine one-loop string corrections to Kahler potentials in type IIB
orientifold compactifications with either N=1 or N=2 supersymmetry, including
D-brane moduli, by evaluating string scattering amplitudes.Comment: 80 pages, 4 figure
Surface modification and characterization of thermoplastic polyurethane
http://www.sciencedirect.com/science/article/B6TWW-4VP4TNJ-1/2/26b1d7dd60ae5bcab0cfe30ac2771c0
- …