1,764 research outputs found

    Uniform Penalty inversion of two-dimensional NMR Relaxation data

    Full text link
    The inversion of two-dimensional NMR data is an ill-posed problem related to the numerical computation of the inverse Laplace transform. In this paper we present the 2DUPEN algorithm that extends the Uniform Penalty (UPEN) algorithm [Borgia, Brown, Fantazzini, {\em Journal of Magnetic Resonance}, 1998] to two-dimensional data. The UPEN algorithm, defined for the inversion of one-dimensional NMR relaxation data, uses Tikhonov-like regularization and optionally non-negativity constraints in order to implement locally adapted regularization. In this paper, we analyze the regularization properties of this approach. Moreover, we extend the one-dimensional UPEN algorithm to the two-dimensional case and present an efficient implementation based on the Newton Projection method. Without any a-priori information on the noise norm, 2DUPEN automatically computes the locally adapted regularization parameters and the distribution of the unknown NMR parameters by using variable smoothing. Results of numerical experiments on simulated and real data are presented in order to illustrate the potential of the proposed method in reconstructing peaks and flat regions with the same accuracy

    A methodology to guide the selection of composite materials in a wind turbine rotor blade design process

    Get PDF
    This work is concerned with the development of an optimization methodology for the composite materials used in wind turbine blades. Goal of the approach is to guide designers in the selection of the different materials of the blade, while providing indications to composite manufacturers on optimal trade-offs between mechanical properties and material costs. The method works by using a parametric material model, and including its free parameters amongst the design variables of a multi-disciplinary wind turbine optimization procedure. The proposed method is tested on the structural redesign of a conceptual 10 MW wind turbine blade, its spar caps and shell skin laminates being subjected to optimization. The procedure identifies a blade optimum for a new spar cap laminate characterized by a higher longitudinal Young's modulus and higher cost than the initial one, which however in turn induce both cost and mass savings in the blade. In terms of shell skin, the adoption of a laminate with intermediate properties between a bi-axial one and a tri-axial one also leads to slight structural improvements

    In Defence of Modest Doxasticism About Delusions

    Get PDF
    Here I reply to the main points raised by the commentators on the arguments put forward in my Delusions and Other Irrational Beliefs (OUP, 2009). My response is aimed at defending a modest doxastic account of clinical delusions, and is articulated in three sections. First, I consider the view that delusions are in-between perceptual and doxastic states, defended by Jacob Hohwy and Vivek Rajan, and the view that delusions are failed attempts at believing or not-quite-beliefs, proposed by Eric Schwitzgebel and Maura Tumulty. Then, I address the relationship between the doxastic account of delusions and the role, nature, and prospects of folk psychology, which is discussed by Dominic Murphy, Keith Frankish, and Maura Tumulty in their contributions. In the final remarks, I turn to the continuity thesis and suggest that, although there are important differences between clinical delusions and non-pathological beliefs, these differences cannot be characterised satisfactorily in epistemic terms. \u

    Integrated design optimization of wind turbines with noise emission constraints

    Get PDF
    This study integrates aeroacoustic noise emission models within a wind turbine design procedure to include overall sound pressure levels as design constraints. The proposed approach aims at the minimization of the cost of energy from wind, while ensuring the compliance with noise emission limits. The reference 3.35 MW onshore wind turbine developed within the international cooperation IEA Wind Task 37 is redesigned to reduce its noise emissions above and below rated wind speed, considering both single- and multi-objective design criteria. Results obtained with the proposed noise-constrained redesign methodology are compared with the simpler approach of reducing the tip speed without altering the blade shape. Results show that, while the simplistic approach causes a drop of −2.8% in annual energy production and a +2.5% increase in cost of energy, an optimized configuration fulfills the noise requirement without incurring into significant energy penalties

    Integration of prebend optimization in a holistic wind turbine design tool

    Get PDF
    This paper considers the problem of identifying the optimal combination of blade prebend, rotor cone angle and nacelle uptilt, within an integrated aero-structural design environment. Prebend is designed to reach maximum rotor area at rated conditions, while cone and uptilt are computed together with all other design variables to minimize the cost of energy. Constraints are added to the problem formulation in order to translate various design requirements. The proposed optimization approach is applied to a conceptual 10 MW offshore wind turbine, highlighting the benefits of an optimal combination of blade curvature, cone and uptilt angles

    Leveraging fitness and lean bundles to build the cumulative performance sand cone model

    Get PDF
    Based on a sample of 317 manufacturing companies, this study adopts a structural equation modeling approach to test the relationships between bundles of lean practices and performance. The results of our analyses suggest that there is a sequence of lean practice implementation that permits to improve all the dimensions of operational performance. This study contributes to the academic literature and to practitioners by supporting the idea that a company - to achieve manufacturing excellence - should implement a "sand-cone" of lean practices to obtain a "sand-cone" of cumulative performance

    Can pesticide acute toxicity for bumblebees be derived from honeybee LD50 values?

    Get PDF
    contribution to session II Bumblebees and other bee specie

    Dipolar Bose-Einstein condensates with dipole-dependent scattering length

    Full text link
    We consider a Bose-Einstein condensate of polar molecules in a harmonic trap, where the effective dipole may be tuned by an external field. We demonstrate that taking into account the dependence of the scattering length on the dipole moment is essential to reproducing the correct energies and for predicting the stability of the condensate. We do this by comparing Gross-Pitaevskii calculations with diffusion Monte Carlo calculations. We find very good agreement between the results obtained by these two approaches once the dipole dependence of the scattering length is taken into account. We also examine the behavior of the condensate in non-isotropic traps

    Parallel pumping of magnetic vortex gyrations in spin-torque nano-oscillators

    Full text link
    We experimentally demonstrate that large magnetic vortex oscillations can be parametrically excited in a magnetic tunnel junction by the injection of radio-frequency (rf) currents at twice the natural frequency of the gyrotropic vortex core motion. The mechanism of excitation is based on the parallel pumping of vortex motion by the rf orthoradial field generated by the injected current. Theoretical analysis shows that experimental results can be interpreted as the manifestation of parametric amplification when rf current is small, and of parametric instability when rf current is above a certain threshold. By taking into account the energy nonlinearities, we succeed to describe the amplitude saturation of vortex oscillations as well as the coexistence of stable regimes.Comment: Submitted to Phys. Rev. Let
    • …
    corecore