1,977 research outputs found

    Anatomo-functional correspondence in the superior temporal sulcus

    Get PDF
    The superior temporal sulcus (STS) is an intriguing region both for its complex anatomy and for the multiple functions that it hosts. Unfortunately, most studies explored either the functional organization or the anatomy of the STS only. Here, we link these two aspects by investigating anatomo-functional correspondences between the voice-sensitive cortex (Temporal Voice Areas) and the STS depth. To do so, anatomical and functional scans of 116 subjects were processed such as to generate individual surface maps on which both depth and functional voice activity can be analyzed. Individual depth profiles of manually drawn STS and functional profiles from a voice localizer (voice > non-voice) maps were extracted and compared to assess anatomo-functional correspondences. Three major results were obtained: first, the STS exhibits a highly significant rightward depth asymmetry in its middle part. Second, there is an anatomo-functional correspondence between the location of the voice-sensitive peak and the deepest point inside this asymmetrical region bilaterally. Finally, we showed that this correspondence was independent of the gender and, using a machine learning approach, that it existed at the individual level. These findings offer new perspectives for the understanding of anatomo-functional correspondences in this complex cortical region

    Catalogue of the new marine harpacticoid copepods

    Get PDF

    Low Frequency Tilt Seismology with a Precision Ground Rotation Sensor

    Get PDF
    We describe measurements of the rotational component of teleseismic surface waves using an inertial high-precision ground-rotation-sensor installed at the LIGO Hanford Observatory (LHO). The sensor has a noise floor of 0.4 nrad/Hz/ \sqrt{\rm Hz} at 50 mHz and a translational coupling of less than 1 μ\murad/m enabling translation-free measurement of small rotations. We present observations of the rotational motion from Rayleigh waves of six teleseismic events from varied locations and with magnitudes ranging from M6.7 to M7.9. These events were used to estimate phase dispersion curves which shows agreement with a similar analysis done with an array of three STS-2 seismometers also located at LHO

    Semi-free forearm flap for pharyngeal-esophageal reconstruction after radiation therapy

    Get PDF
    AbstractReconstruction of the pharynx and upper esophagus uses various procedures, including pedicled or free flap. Pharyngoplasty with free forearm flap provides excellent functional results. In radiation-related pharyngeal stenosis, recipient vascularization is often poor, especially in the venous system. The authors describe pharyngeal reconstruction with semi-free forearm flap, pedicled on the cephalic vein, to minimize the risk of venous thrombosis, which is the main factor of free forearm flap necrosis. Taking the case of a laryngectomy with complete pharyngeal stenosis after radiation therapy and iterative neck surgery, the technique of pharyngeal-esophageal reconstruction by semi-free forearm flap is described in a context of impaired vascularization

    Benchmarking computer platforms for lattice QCD applications

    Full text link
    We define a benchmark suite for lattice QCD and report on benchmark results from several computer platforms. The platforms considered are apeNEXT, CRAY T3E, Hitachi SR8000, IBM p690, PC-Clusters, and QCDOC.Comment: 3 pages, Lattice03, machines and algorithm

    Embedded hardware for closing the gap between research and industry in the assistive powered wheelchair market

    Get PDF
    Literature is abound with smart wheelchair platforms of various developments, yet to date there has been little technology find its way to the market place. Many trials and much research has taken place over the last few decades however the end user has benefited precious little. There exists two fundamental difficulties when developing a smart powered wheelchair assistive system, the first is need for the system to be fully compatible with all of the manufacturers, and the second is to produce a technology and business model which is marketable and therefore desirable to the manufacturers. However this requires the researchers to have access to hardware which can be used to develop practical systems which integrate and communicate seamlessly with current manufacturer’s wheelchair systems. We present our powered wheelchair system which integrates with 95% of the powered wheelchair controller market; our system allows researchers to access the low level embedded system with more powerful computational devices running sophisticated software enabling rapid development of algorithms and techniques. When they have been evaluated they can be easily ported to the embedded processor for real-time evaluation and clinical trial

    APEnet+: high bandwidth 3D torus direct network for petaflops scale commodity clusters

    Full text link
    We describe herein the APElink+ board, a PCIe interconnect adapter featuring the latest advances in wire speed and interface technology plus hardware support for a RDMA programming model and experimental acceleration of GPU networking; this design allows us to build a low latency, high bandwidth PC cluster, the APEnet+ network, the new generation of our cost-effective, tens-of-thousands-scalable cluster network architecture. Some test results and characterization of data transmission of a complete testbench, based on a commercial development card mounting an Altera FPGA, are provided.Comment: 6 pages, 7 figures, proceeding of CHEP 2010, Taiwan, October 18-2
    • …
    corecore