2,733 research outputs found

    Mass transport in morphogenetic processes: a second gradient theory for volumetric growth and material remodeling

    Get PDF
    International audienceIn this work, we derive a novel thermo-mechanical theory for growth and remodeling of biological materials in morphogenetic processes. This second gradient hyperelastic theory is the first attempt to describe both volumetric growth and mass transport phenomena in a single-phase continuum model, where both stress- and shape-dependent growth regulations can be investigated. The diffusion of biochemical species (e.g. morphogens, growth factors, migration signals) inside the material is driven by configurational forces, enforced in the balance equations and in the set of constitutive relations. Mass transport is found to depend both on first- and on second-order material connections, possibly withstanding a chemotactic behavior with respect to diffusing molecules. We find that the driving forces of mass diffusion can be written in terms of covariant material derivatives reflecting, in a purely geometrical manner, the presence of a (first-order) torsion and a (second-order) curvature. Thermodynamical arguments show that the Eshelby stress and hyperstress tensors drive the rearrangement of the first- and second-order material inhomogeneities, respectively. In particular, an evolution law is proposed for the first-order transplant, extending a well-known result for inelastic materials. Moreover, we define the first stress-driven evolution law of the second-order transplant in function of the completely material Eshelby hyperstress

    The dynamics of grouping-induced biases in apparent numerosity revealed by a continuous tracking technique

    Get PDF
    Connecting pairs of items causes robust underestimation of the numerosity of an ensemble, presumably by invoking grouping mechanisms. Here we asked whether this underestimation in numerosity judgments could be revealed and further explored by continuous tracking, a newly developed technique that allows for fast and efficient data acquisition and monitors the dynamics of the responses. Participants continuously reproduced the perceived numerosity of a cloud of dots by moving a cursor along a number line, while the number of dots and the proportion connected by lines varied over time following two independent random walks. The technique was robust and efficient, and correlated well with results obtained with a standard psychophysics task. Connecting objects with lines caused an underestimation of approximately 15% during tracking, agreeing with previous studies. The response to the lines was slower than the response to the physical numerosity, with a delay of approximately 150 ms, suggesting that this extra time is necessary for processing the grouping effect

    MOS CCDs for the wide field imager on the XEUS spacecraft

    Get PDF
    In recent years the XEUS mission concept has evolved and has been the subject of several industrial studies. The mission concept has now matured to the point that it could be proposed for a Phase A study and subsequent flight programme. The key feature of XEUS will be its X-ray optic with collecting area ~30-100x that of XMM. The mission is envisaged at an orbit around the L2 point in space, and is formed from two spacecraft; one for the mirrors, and the other for the focal plane detectors. With a focal length of 50m, the plate scale of the optic is 6.5x that of XMM, which using existing focal plane technology will reduce the effective field of view to a few arc minutes. Cryogenic instrumentation, with detector sizes of a few mm can only be used for narrow field studies of target objects, and a wide field instrument is under consideration using a DEPFET pixel array to image out to a diameter of 5 arcminutes, requiring an array of dimension 70mm. It is envisaged to extend this field of view possibly out to 15 arcminutes through the use of an outer detection ring comprised of MOS CCD

    Ideal observer analysis for continuous tracking experiments

    Get PDF
    Continuous tracking is a newly developed technique that allows fast and efficient data acquisition by asking participants to “track” a stimulus varying in some property (usually position in space). Tracking is a promising paradigm for the investigation of dynamic features of perception and could be particularly well suited for testing ecologically relevant situations difficult to study with classical psychophysical paradigms. The high rate of data collection may be useful in studies on clinical populations and children, who are unable to undergo long testing sessions. In this study, we designed tracking experiments with two novel stimulus features, numerosity and size, proving the feasibility of the technique outside standard object tracking. We went on to develop an ideal observer model that characterizes the results in terms of efficiency of conversion of stimulus strength into responses, and identification of early and late noise sources. Our ideal observer closely modeled results from human participants, providing a generalized framework for the interpretation of tracking data. The proposed model allows to use the tracking paradigm in various perceptual domains, and to study the divergence of human participants from ideal behavior

    Sistemas de produção de grãos com pastagens anuais de inverno, para a região Sul do Brasil, sob sistema plantio direto.

    Get PDF
    bitstream/item/84153/1/CNPT-COM.-TEC.-1-97.pd
    • …
    corecore