516 research outputs found

    What is the Entanglement Length in a Polymer Melt ?

    Full text link
    We present results of molecular dynamics simulations of very long model polymer chains analyzed by various experimentally relevant techniques. The segment motion of the chains is found to be in very good agreement with the repatation model. We also calculated the plateau-modulus G_N. The predicitions of the entanglement length N_e from G_N and from the mean square displacements of the chains segments disagree by a factor of about 2.2(2), indicating an error in the prefactor in the standard formula for G_N. We show that recent neutron spin echo measurements were carried out for chain lengths which are too small for a correct determination of N_e.Comment: 5 pages, 4 figures, RevTe

    Terahertz hot electron bolometer waveguide mixers for GREAT

    Full text link
    Supplementing the publications based on the first-light observations with the German Receiver for Astronomy at Terahertz frequencies (GREAT) on SOFIA, we present background information on the underlying heterodyne detector technology. We describe the superconducting hot electron bolometer (HEB) detectors that are used as frequency mixers in the L1 (1400 GHz), L2 (1900 GHz), and M (2500 GHz) channels of GREAT. Measured performance of the detectors is presented and background information on their operation in GREAT is given. Our mixer units are waveguide-based and couple to free-space radiation via a feedhorn antenna. The HEB mixers are designed, fabricated, characterized, and flight-qualified in-house. We are able to use the full intermediate frequency bandwidth of the mixers using silicon-germanium multi-octave cryogenic low-noise amplifiers with very low input return loss. Superconducting HEB mixers have proven to be practical and sensitive detectors for high-resolution THz frequency spectroscopy on SOFIA. We show that our niobium-titanium-nitride (NbTiN) material HEBs on silicon nitride (SiN) membrane substrates have an intermediate frequency (IF) noise roll-off frequency above 2.8 GHz, which does not limit the current receiver IF bandwidth. Our mixer technology development efforts culminate in the first successful operation of a waveguide-based HEB mixer at 2.5 THz and deployment for radioastronomy. A significant contribution to the success of GREAT is made by technological development, thorough characterization and performance optimization of the mixer and its IF interface for receiver operation on SOFIA. In particular, the development of an optimized mixer IF interface contributes to the low passband ripple and excellent stability, which GREAT demonstrated during its initial successful astronomical observation runs.Comment: Accepted for publication in A&A (SOFIA/GREAT special issue

    Foraging areas of king penguins (Aptenodytes patagonicus) breeding at Possession Island in the Southern Indian Ocean

    Get PDF
    Between January and March 1994 and between January and June 1995 we used Global Location Sensors(GLS) to determine the feeding areas of King Penguins Aptenodytes patagonicus breeding at Possession Island, Crozet Archipalago. In both years, the preferred feeding area during summer was located about 300 km south of the island, being slightly more distant in 1995. Mean foraging trip duration was 5.7±1.1 days (n = 6) during summer 1994 and 8.9±3.7 days (n = 9) during summer 1995, respectively. During summer the travelling speed of the King Penguins studied was highest at the first and last days of the foraging trip (c. 8 km/h). During the middle days of foraging trips travelling speeds were much lower (< 5 km/h). In early winter, between late April and mid-June 1995, two King Penguins equipped with GLSs executed foraging trips with durations of 53 and 59 days, respectively. Both birds travelled beyond 60°S with maximum distances to the colony of 1600 and 1800 km, respectively, and total distances covered of about 5000 km. The winter trips were characterized by alternating periods of higher and lower distances covered, indicating a highly variable feeding success at different localities. The relationships between foraging trip duration (days) and maximum distance to the colony (km) and total distance covered (km) were calculated to be maximum distance = 210 + 27 d and total distance = 340 + 85 d

    Inter-annual variation in the trophic niche of Magellanic penguins Spheniscus magellanicus during the pre-molt period in the Beagle Channel

    Get PDF
    Inter-annual variations in the diets of seabirds are often a reflection of resource availability, with population dynamics and community structure implications. We investigated the trophic niche of Magellanic penguins Spheniscus magellanicus during the pre-molt stage in 6 years (2009 and 2013−2017) at Martillo Island, Beagle Channel, Argentina, using carbon and nitrogen stable isotope analysis of feathers. We found higher values in 2009 compared to the other years for both isotopes and estimated different proportions of prey in the diet of Magellanic penguins throughout the years. In 2009, penguins consumed mainly a mixture of benthic and benthopelagic fish, whereas from 2013 to 2017, the proportion of the pelagic form of squat lobster Munida gregaria, considered a key species in the Beagle Channel, increased over time and nearly dominated diets in 2017. Our results confirm that Magellanic penguins act as sentinels, reflecting shifts in the marine community of the Beagle Channel via inter-annual variation in their trophic niche and diet composition.Fil: Dodino, Samanta Graciela. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro Austral de Investigaciones CientĂ­ficas; ArgentinaFil: Riccialdelli, Luciana. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro Austral de Investigaciones CientĂ­ficas; ArgentinaFil: Polito, M.J.. State University of Louisiana; Estados UnidosFil: PĂŒtz, K.. Antartic Research Trust; AlemaniaFil: Raya Rey, Andrea NĂ©lida. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro Austral de Investigaciones CientĂ­ficas; Argentina. Universidad Nacional de Tierra del Fuego; Argentin

    Quo vadis? Seevögel und ihr mariner Lebensraum

    Get PDF

    Shear yielding of amorphous glassy solids: Effect of temperature and strain rate

    Full text link
    We study shear yielding and steady state flow of glassy materials with molecular dynamics simulations of two standard models: amorphous polymers and bidisperse Lennard-Jones glasses. For a fixed strain rate, the maximum shear yield stress and the steady state flow stress in simple shear both drop linearly with increasing temperature. The dependence on strain rate can be described by a either a logarithm or a power-law added to a constant. In marked contrast to predictions of traditional thermal activation models, the rate dependence is nearly independent of temperature. The relation to more recent models of plastic deformation and glassy rheology is discussed, and the dynamics of particles and stress in small regions is examined in light of these findings

    Yield conditions for deformation of amorphous polymer glasses

    Full text link
    Shear yielding of glassy polymers is usually described in terms of the pressure-dependent Tresca or von Mises yield criteria. We test these criteria against molecular dynamics simulations of deformation in amorphous polymer glasses under triaxial loading conditions that are difficult to realize in experiments. Difficulties and ambiguities in extending several standard definitions of the yield point to triaxial loads are described. Two definitions, the maximum and offset octahedral stresses, are then used to evaluate the yield stress for a wide range of model parameters. In all cases, the onset of shear is consistent with the pressure-modified von Mises criterion, and the pressure coefficient is nearly independent of many parameters. Under triaxial tensile loading, the mode of failure changes to cavitation.Comment: 9 pages, 8 figures, revte

    Self-similar chain conformations in polymer gels

    Full text link
    We use molecular dynamics simulations to study the swelling of randomly end-cross-linked polymer networks in good solvent conditions. We find that the equilibrium degree of swelling saturates at Q_eq = N_e**(3/5) for mean strand lengths N_s exceeding the melt entanglement length N_e. The internal structure of the network strands in the swollen state is characterized by a new exponent nu=0.72. Our findings are in contradiction to de Gennes' c*-theorem, which predicts Q_eq proportional N_s**(4/5) and nu=0.588. We present a simple Flory argument for a self-similar structure of mutually interpenetrating network strands, which yields nu=7/10 and otherwise recovers the classical Flory-Rehner theory. In particular, Q_eq = N_e**(3/5), if N_e is used as effective strand length.Comment: 4 pages, RevTex, 3 Figure
    • 

    corecore