386 research outputs found

    Detection of the tSZ effect with the NIKA camera

    Full text link
    We present the first detection of the thermal Sunyaev-Zel'dovich (tSZ) effect from a cluster of galaxies performed with a KIDs (Kinetic Inductance Detectors) based instrument. The tSZ effect is a distortion of the black body CMB (Cosmic Microwave Background) spectrum produced by the inverse Compton interaction of CMB photons with the hot electrons of the ionized intra-cluster medium. The massive, intermediate redshift cluster RX J1347.5-1145 has been observed using NIKA (New IRAM KIDs arrays), a dual-band (140 and 240 GHz) mm-wave imaging camera, which exploits two arrays of hundreds of KIDs: the resonant frequencies of the superconducting resonators are shifted by mm-wave photons absorption. This tSZ cluster observation demonstrates the potential of the next generation NIKA2 instrument, being developed for the 30m telescope of IRAM, at Pico Veleta (Spain). NIKA2 will have 1000 detectors at 140GHz and 2x2000 detectors at 240GHz, providing in that band also a measurement of the linear polarization. NIKA2 will be commissioned in 2015.Comment: SF2A Proceedings 201

    High resolution SZ observations at the IRAM 30-m telescope with NIKA

    Full text link
    High resolution observations of the thermal Sunyaev-Zel'dovich (tSZ) effect are necessary to allow the use of clusters of galaxies as a probe for large scale structures at high redshifts. With its high resolution and dual-band capability at millimeter wavelengths, the NIKA camera can play a significant role in this context. NIKA is based on newly developed Kinetic Inductance Detectors (KIDs) and operates at the IRAM 30m telescope, Pico Veleta, Spain. In this paper, we give the status of the NIKA camera, focussing on the KID technology. We then present observations of three galaxy clusters: RX J1347.5-1145 as a demonstrator of the NIKA capabilities and the recent observations of CL J1226.9+3332 (z = 0.89) and MACS J0717.5+3745 (z = 0.55). We also discuss prospects for the final NIKA2 camera, which will have a 6.5 arcminute field of view with about 5000 detectors in two bands at 150 and 260 GHz

    NIKA 2: next-generation continuum/polarized camera at the IRAM 30 m telescope and its prototype

    Get PDF
    NIKA 2 (New Instrument of Kids Array) is a next generation continuum and polarized instrument successfully installed in October 2015 at the IRAM 30 m telescope on Pico-Veleta (Granada, Spain). NIKA 2 is a high resolution dual-band camera, operating with frequency multiplexed LEKIDs (Lumped Element Kinetic Inductance Detectors) cooled at 100 mK. Dual color images are obtained thanks to the simultaneous readout of a 1020 pixels array at 2 mm and 1140 x 2 pixels arrays at 1.15 mm with a final resolution of 18 and 12 arcsec respectively, and 6.5 arcmin of Field of View (FoV). The two arrays at 1.15 mm allow us to measure the linear polarization of the incoming light. This will place NIKA 2 as an instrument of choice to study the role of magnetic fields in the star formation process. The NIKA experiment, a prototype for NIKA 2 with a reduced number of detectors (about 400 LEKIDs) and FoV (1.8 arcmin), has been successfully operated at the IRAM 30 telescope in several open observational campaigns. The performance of the NIKA 2 polarization setup has been successfully validated with the NIKA prototype.Comment: 5 pages, 4 figures, proceeding for the conference: Extragalactic radio surveys 201

    Non-parametric deprojection of NIKA SZ observations: Pressure distribution in the Planck-discovered cluster PSZ1 G045.85+57.71

    Get PDF
    The determination of the thermodynamic properties of clusters of galaxies at intermediate and high redshift can bring new insights into the formation of large-scale structures. It is essential for a robust calibration of the mass-observable scaling relations and their scatter, which are key ingredients for precise cosmology using cluster statistics. Here we illustrate an application of high resolution (<20(< 20 arcsec) thermal Sunyaev-Zel'dovich (tSZ) observations by probing the intracluster medium (ICM) of the \planck-discovered galaxy cluster \psz\ at redshift z=0.61z = 0.61, using tSZ data obtained with the NIKA camera, which is a dual-band (150 and 260~GHz) instrument operated at the IRAM 30-meter telescope. We deproject jointly NIKA and \planck\ data to extract the electronic pressure distribution from the cluster core (R∌0.02 R500R \sim 0.02\, R_{500}) to its outskirts (R∌3 R500R \sim 3\, R_{500}) non-parametrically for the first time at intermediate redshift. The constraints on the resulting pressure profile allow us to reduce the relative uncertainty on the integrated Compton parameter by a factor of two compared to the \planck\ value. Combining the tSZ data and the deprojected electronic density profile from \xmm\ allows us to undertake a hydrostatic mass analysis, for which we study the impact of a spherical model assumption on the total mass estimate. We also investigate the radial temperature and entropy distributions. These data indicate that \psz\ is a massive (M500∌5.5×1014M_{500} \sim 5.5 \times 10^{14} M⊙_{\odot}) cool-core cluster. This work is part of a pilot study aiming at optimizing the treatment of the NIKA2 tSZ large program dedicated to the follow-up of SZ-discovered clusters at intermediate and high redshifts. (abridged)Comment: 16 pages, 10 figure

    High-resolution tSZ cartography of clusters of galaxies with NIKA at the IRAM 30-m telescope

    Full text link
    The thermal Sunyaev-Zeldovich effect (tSZ) is a powerful probe to study clusters of galaxies and is complementary with respect to X-ray, lensing or optical observations. Previous arcmin resolution tSZ observations ({\it e.g.} SPT, ACT and Planck) only enabled detailed studies of the intra-cluster medium morphology for low redshift clusters (z<0.2z < 0.2). Thus, the development of precision cosmology with clusters requires high angular resolution observations to extend the understanding of galaxy cluster towards high redshift. NIKA2 is a wide-field (6.5 arcmin field of view) dual-band camera, operated at 100 mK100 \ {\rm mK} and containing ∌3300\sim 3300 KID (Kinetic Inductance Detectors), designed to observe the millimeter sky at 150 and 260 GHz, with an angular resolution of 18 and 12 arcsec respectively. The NIKA2 camera has been installed on the IRAM 30-m telescope (Pico Veleta, Spain) in September 2015. The NIKA2 tSZ observation program will allow us to observe a large sample of clusters (50) at redshift ranging between 0.5 and 1. As a pathfinder for NIKA2, several clusters of galaxies have been observed at the IRAM 30-m telescope with the NIKA prototype to cover the various configurations and observation conditions expected for NIKA2.Comment: Proceedings of the 28th Texas Symposium on Relativistic Astrophysics, Geneva, Switzerland, December 13-18, 201

    High angular resolution Sunyaev-Zel'dovich observations of MACS J1423.8+2404 with NIKA: Multiwavelength analysis

    Get PDF
    The prototype of the NIKA2 camera, NIKA, is an instrument operating at the IRAM 30-m telescope, which can observe simultaneously at 150 and 260GHz. One of the main goals of NIKA2 is to measure the pressure distribution in galaxy clusters at high resolution using the thermal SZ (tSZ) effect. Such observations have already proved to be an excellent probe of cluster pressure distributions even at high redshifts. However, an important fraction of clusters host submm and/or radio point sources, which can significantly affect the reconstructed signal. Here we report on <20" resolution observations at 150 and 260GHz of the cluster MACSJ1424, which hosts both radio and submm point sources. We examine the morphology of the tSZ signal and compare it to other datasets. The NIKA data are combined with Herschel satellite data to study the SED of the submm point source contaminants. We then perform a joint reconstruction of the intracluster medium (ICM) electronic pressure and density by combining NIKA, Planck, XMM-Newton, and Chandra data, focusing on the impact of the radio and submm sources on the reconstructed pressure profile. We find that large-scale pressure distribution is unaffected by the point sources because of the resolved nature of the NIKA observations. The reconstructed pressure in the inner region is slightly higher when the contribution of point sources are removed. We show that it is not possible to set strong constraints on the central pressure distribution without accurately removing these contaminants. The comparison with X-ray only data shows good agreement for the pressure, temperature, and entropy profiles, which all indicate that MACSJ1424 is a dynamically relaxed cool core system. The present observations illustrate the possibility of measuring these quantities with a relatively small integration time, even at high redshift and without X-ray spectroscopy.Comment: 15 pages, 17 figures, submitted to A&

    Nika2: A mm camera for cluster cosmology

    Get PDF
    Galaxy clusters constitute a major cosmological probe. However, Planck 2015 results have shown a weak tension between CMB-derived and cluster-derived cosmological parameters. This tension might be due to poor knowledge of the cluster mass and observable relationship. As for now, arcmin resolution Sunyaev-Zeldovich (SZ) observations (e.g. SPT, ACT and Planck) only allowed detailed studies of the intra cluster medium for low redshift clusters (z 0:5) high resolution and high sensitivity SZ observations are needed. With both a wide field of view (6.5 arcmin) and a high angular resolution (17.7 and 11.2 arcsec at 150 and 260 GHz), the NIKA2 camera installed at the IRAM 30-m telescope (Pico Veleta, Spain) is particularly well adapted for these observations. The NIKA2 SZ observation program will map a large sample of clusters (50) at redshifts between 0.5 and 0.9. As a pilot study for NIKA2, several clusters of galaxies have been observed with the pathfinder, NIKA, at the IRAM 30-m telescope to cover the various configurations and observation conditions expected for NIKA2

    Localization of nonlinear excitations in curved waveguides

    Full text link
    Motivated by the example of a curved waveguide embedded in a photonic crystal, we examine the effects of geometry in a ``quantum channel'' of parabolic form. We study the linear case and derive exact as well as approximate expressions for the eigenvalues and eigenfunctions of the linear problem. We then proceed to the nonlinear setting and its stationary states in a number of limiting cases that allow for analytical treatment. The results of our analysis are used as initial conditions in direct numerical simulations of the nonlinear problem and localized excitations are found to persist, as well as to have interesting relaxational dynamics. Analogies of the present problem in contexts related to atomic physics and particularly to Bose-Einstein condensation are discussed.Comment: 14 pages, 4 figure

    First polarised light with the NIKA camera

    Full text link
    NIKA is a dual-band camera operating with 315 frequency multiplexed LEKIDs cooled at 100 mK. NIKA is designed to observe the sky in intensity and polarisation at 150 and 260 GHz from the IRAM 30-m telescope. It is a test-bench for the final NIKA2 camera. The incoming linear polarisation is modulated at four times the mechanical rotation frequency by a warm rotating multi-layer Half Wave Plate. Then, the signal is analysed by a wire grid and finally absorbed by the LEKIDs. The small time constant (< 1ms ) of the LEKID detectors combined with the modulation of the HWP enables the quasi-simultaneous measurement of the three Stokes parameters I, Q, U, representing linear polarisation. In this paper we present results of recent observational campaigns demonstrating the good performance of NIKA in detecting polarisation at mm wavelength.Comment: 7 pages, Proceeding for Journal of Low Temperature Physic

    The NIKA2 instrument, a dual-band kilopixel KID array for millimetric astronomy

    Full text link
    NIKA2 (New IRAM KID Array 2) is a camera dedicated to millimeter wave astronomy based upon kilopixel arrays of Kinetic Inductance Detectors (KID). The pathfinder instrument, NIKA, has already shown state-of-the-art detector performance. NIKA2 builds upon this experience but goes one step further, increasing the total pixel count by a factor ∌\sim10 while maintaining the same per pixel performance. For the next decade, this camera will be the resident photometric instrument of the Institut de Radio Astronomie Millimetrique (IRAM) 30m telescope in Sierra Nevada (Spain). In this paper we give an overview of the main components of NIKA2, and describe the achieved detector performance. The camera has been permanently installed at the IRAM 30m telescope in October 2015. It will be made accessible to the scientific community at the end of 2016, after a one-year commissioning period. When this happens, NIKA2 will become a fundamental tool for astronomers worldwide.Comment: Proceedings of the 16th Low Temperature Detectors workshop. To be published in the Journal of Low Temperature Physics. 8 pages, 4 figures, 1 tabl
    • 

    corecore