448 research outputs found

    Performance analysis of joint precoding and MUD techniques in multibeam satellite systems

    Get PDF
    This paper considers interference mitigation techniques in the forward link of multibeam satellite systems. In contrast to previous works, either devoted to receiver interference mitigation (e.g. multiuser detection) or transmitter interference mitigation (precoding), this work evaluates the achievable rates of the joint combination of both techniques. On the one hand, precoding cannot properly mitigate all the inter- beam interference while maintaining a sufficiently high signal-to-noise ratio. On the other hand, the receiver cost and complexity exponentially increases with the number of signals to be simultaneously detected. This highlights that the receiver cannot deal with all the interferences so that in general only 2 signals are jointly detected. As a result, the use of precoding within a coverage area jointly with multiuser detection can both benefit from each other and extremely increase the achievable rates of the system. This is numerically evaluated in a close-to-real coverage area considering simultaneous non-unique decoding strategies. The results show the benefits of this joint scheme that eventually can increase the current precoding performance a 23%.Peer ReviewedPostprint (author's final draft

    Precoding in multigateway multibeam satellite systems

    Get PDF
    This paper considers a multigateway multibeam satellite system with multiple feeds per beam. In these systems, each gateway serves a set of beams (cluster) so that the overall data traffic is generated at different geographical areas. Full frequency reuse among beams is considered so that interference mitigation techniques are mandatory. Precisely, this paper aims at designing the precoding scheme which, in contrast to single gateway schemes, entails two main challenges. First, the precoding matrix shall be separated into feed groups assigned to each gateway. Second, complete channel state information (CSI) is required at each gateway, leading to a large communication overhead. In order to solve these problems, a design based on a regularized singular value block decomposition of the channel matrix is presented so that both intercluster (i.e., beams of different clusters) and intracluster (i.e., beams of the same cluster) interference is minimized. In addition, different gateway cooperative schemes are analyzed in order to keep the inter-gateway communication low. Furthermore, the impact of the feeder link interference (i.e., interference between different feeder links) is analyzed and it is shown both numerically and analytically that the system performance is reduced severely whenever this interference occurs even though precoding reverts this additional interference. Finally, multicast transmission is also considered. Numerical simulations are shown considering the latest fixed broadband communication standard DVB-S2X so that the quantized feedback effect is evaluated. The proposed precoding technique results to achieve a performance close to the single gateway operation even when the cooperation among gateways is low.Postprint (author's final draft

    NOMA and interference limited satellite scenarios

    Get PDF
    This paper deals with the problem of non-orthogonal multiple access (NOMA) in multibeam satellite systems, where the signals are jointly precoded. It is considered that the number of frames that are simultaneously transmitted is higher than the number of feeds, reducing the precoding interference mitigation capabilities as the system becomes overloaded. In order to solve this problem, we assume that the satellite user terminals are able to perform multi-user detection to mitigate the interference. In the current NOMA approach, it is assumed a successive interference cancellation (SIC) receiver. To increase the spectral efficiency, this paper investigates NOMA with simultaneous non-unique detection (SND). Compared to the case where user terminals perform single user detection (SUD), conventional scheduling heuristic rules do not longer apply in this scenario. Therefore, different scheduling algorithms are proposed considering both SIC and SND strategies. As the numerical evaluations show, SND yields larger average data rates than the SIC receiver. Concerning the scheduling, the best strategy is to pair users with highly correlated channels and the lowest channel gain difference. It is also shown that the sum-rate can be increased in overloaded satellite systems with respect to satellite scenarios, where the number of transmitted frames and feeds is the same.Peer ReviewedPostprint (author's final draft

    Precoding in multigateway multibeam satellite systems

    Get PDF
    This paper considers a multigateway multibeam satellite system with multiple feeds per beam. In these systems, each gateway serves a set of beams (cluster) so that the overall data traffic is generated at different geographical areas. Full frequency reuse among beams is considered so that interference mitigation techniques are mandatory. Precisely, this paper aims at designing the precoding scheme which, in contrast to single gateway schemes, entails two main challenges. First, the precoding matrix shall be separated into feed groups assigned to each gateway. Second, complete channel state information (CSI) is required at each gateway, leading to a large communication overhead. In order to solve these problems, a design based on a regularized singular value block decomposition of the channel matrix is presented so that both intercluster (i.e., beams of different clusters) and intracluster (i.e., beams of the same cluster) interference is minimized. In addition, different gateway cooperative schemes are analyzed in order to keep the inter-gateway communication low. Furthermore, the impact of the feeder link interference (i.e., interference between different feeder links) is analyzed and it is shown both numerically and analytically that the system performance is reduced severely whenever this interference occurs even though precoding reverts this additional interference. Finally, multicast transmission is also considered. Numerical simulations are shown considering the latest fixed broadband communication standard DVB-S2X so that the quantized feedback effect is evaluated. The proposed precoding technique results to achieve a performance close to the single gateway operation even when the cooperation among gateways is low.Postprint (author's final draft

    PHY-MAC dialogue with multi-packet reception

    Get PDF
    Cross-layer design has been considered recently as a new approach when designing MAC protocols in systems with diversity such as CDMA. This paper goes one step further in the cross layer design by proposing a PHY-MAC dialogue involving the exchange of parameters such as BER and active users. By means of this PHY-MAC dialogue, system performance can be improved. A two-stage receiver is used at PHY level. The first stage tracks active users while the second stage is a data demodulator. The Modified Dynamic Queue Protocol (MDQP) is proposed as the MAC protocol of our system. When the knowledge of active users is possible, it is demonstrated by simulations that MDQP outperforms DQP.Postprint (published version

    Decentralised multi-access MAC protocol for ad-hoc networks

    Get PDF
    In ad-hoc radio networks, mechanisms on how to access the radio channel are extremely important in order to improve network efficiency and, when needed, to guarantee QoS. Traditionally, Medium Access Control (MAC) protocols in ad hoc networks have been designed to face off the well known collision resolution problem. However, when using advanced signal processing techniques, general assumptions on collisions and packet loss are no longer valid. Besides, little has been reported about MAC algorithms dealing with multiaccess channels in ad hoc networks. In this paper, we present a novel decentralized multiaccess MAC protocol for Ad Hoc networks. This MAC protocol is an hybrid CDMA-TDMA in which a cross layer approach has been followed to dinamically adapt to the traffic load. Closed expressions for the throughput and delay of the network are presented as a function of the multipacket reception capability of the receiver, the number of codes and the packet retransmission probability.Postprint (published version

    Analysis and evaluation of decentralized multiaccess Mac for ad-hoc networks

    Get PDF
    In mobile ad-hoc radio networks, terminals are mobile and heterogeneous, the architecture of the network is continuously changing, communication links are packet oriented and radio resources are scarce. Therefore, mechanisms on how to access the radio channel are extremely important in order to improve network efficiency and, when needed, to guarantee QoS. However, due to these network harsh conditions, decentralized Medium Access Control (MAC) protocols designed specifically for ad hoc networks are scarce. In this paper we present a novel decentralized multiaccess MAC protocol for Ad Hoc networks. This MAC protocol is an hybrid CDMATDMA in which a cross layer approach has been followed in order to maximize network throughput. A theoretical analysis of the system is presented ending up with closed expressions for the throughput and delay of the network and some simulations are presented to evaluate the performance of the system.Postprint (published version

    Practical security considerations for IoT systems over satellite

    Get PDF
    Currently, the forecast for the European market for IoT is a yearly 19.8% increase up to reach $241 billion in 2025. Thisstrong growing will be concentrated in verticals from manufacturing, utilities, retail and transportation [1], [2]. However, in orderto monetize the potential services over IoT it is necessary to guarantee the security of the communications [3]. In this regardphysical-layer security methods may complement higher-layer encryption techniques by exploiting the characteristics of wirelesschannels. For this purpose, it is resorted to the secrecy-capacity metric to measure the security level. More specifically, it was shownin [4] that reliable information-theoretic security could be achieved, whenever the eavesdropper’s channel be a degraded versionof the legitimate user’s channel. In this case, if the secrecy rate is chosen below the secrecy-capacity, then reliable transmissionscan be achieved in perfect secrecy. However, the time-varying fading effect of wireless channels degrades the secrecy-capacity. Inthis situation, it is used the ergodic capacity to measure the secrecy-capacity [5]. In order to make the overhearing process of theeavesdroppers difficult, it is used the time-packing/faster than Nyquist strategy [6]- [7].Thus, the time-duration of the transmittedframes are reduced which: i) improves the interception probability of the packets, ii) augments the spectral efficiency of theM2M communications without increasing the transmission bandwidth, iii) diminishes the effect of Doppler spread in Non-GEOcommunications, and iv) permits to use the overlapping degree among the pulse shapes to boost the secrecy-capacity. On thecontrary, this overlapping degree introduces a multi-path channel that may difficult the synchronization process. However, thecoefficients of the multipath channel are known by the legitimate user but ignored by the eavesdropper. This strategy of securityis similar to that the Artificial Noise (AN) one pursues [5], [8]- [9], but without wasting energy for jamming the eavesdropper’schannel.Note that the satellite channel model has a large Line of Sight (LoS) component. So, it means that the channel of theeavesdropper and the legitimate user could be quite similar in the same beam of the satellite constellation. So it is necessary todistort the channel of the desired user in order to increase the security of the communications. The use of non-Nyquist pulses,permits to introduce an artificial multipath interference that degrades the eavesdropper’s channel. In this case, we have consideredtwo types of eavesdropper: i) without being able to estimate the time-packing multipath, and ii) equipped with an estimationblock of the time-packing interference. In the first case, all interference signals are considered as noise whereas in the secondone part of the interference is assumed as noise. In both cases, it is possible to obtain a secrecy-capacity. Finally, comment thatin satellite constellation there is a residual co-channel interference. This interference limits the resolution of the eavesdroppersalthough they be equipped with multiple antennas. We have considered that the eavesdropper does not have full knowledge of thetime-packed/faster than Nyquist multi-path interference. This pragmatic approach was also followed in [9]. However, there therain losses made difficult to obtain perfect channel estimations.Peer ReviewedPostprint (published version

    The energy efficiency of the ergodic fading relay channel

    Get PDF
    In this paper, we address the energy ef ciency analysis of the relay channel under ergodic fading. The study considers full duplex and half duplex terminals. Since the capacity of general relay channels is unknown, we investigate achievable rates with decode and forward and capacity upper bounds with the cut-set bound. The maximum rate per energy and the slope of the spectral ef ciency with the energy per bit are computed to asses the impact of the duplexing capabilities, the resource allocation and the channel fading distribution.Postprint (published version

    Cross-coupled doa trackers

    Get PDF
    A new robust, low complexity algorithm for multiuser tracking is proposed, modifying the two-stage parallel architecture of the estimate-maximize (EM) algorithm. The algorithm copes with spatially colored noise, large differences in source powers, multipath, and crossing trajectories. Following a discussion on stability, the simulations demonstrate an asymptotic and tracking behavior that neither the EM nor a nonparallelized tracker can emulate.Peer ReviewedPostprint (published version
    • 

    corecore